FINAL

2002 MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING TECHNICAL MEMORANDUM

NORTHWEST PIPE AND CASING OPERABLE UNIT 2 GROUNDWATER REMEDIAL DESIGN

NW Pipe and Casing/Hall Process Company Clackamas, Oregon

January, 2003

Prepared for:

U.S. Environmental Protection Agency 811 SW 6th Avenue Portland, OR 97204

Prepared by:

S.W. Columbia, Suite 900 Portland, Oregon 97201-5814

Job Number: 33754159

Document Control Number: 9300.54

TABLE OF CONTENTS

Section	1.0	INTRODUCTION	1-1	
Section	2.0	SUMMARY OF DRILLING AND MONITORING WELL INSTALLATION	2-1 2-2	
		2.2.1 Geologic Conditions2.2.2 Observed Evidence of Contamination		
Section	3.0	SAMPLING ACTIVITIES		
		3.1 Groundwater Sampling		
		3.2 IDW Characterization3.3 Plant 2 NAPL Characterization		
Section	4.0	GROUNDWATER SAMPLING RESULTS	4-1	
		4.1 Effect of PBSDs on Analytical Results	4-2	
		4.2 Overall COC Trends		
		4.2.1 Plume 1		
		4.2.2 Plume 2		
		4.2.3 Plume 3		
		4.2.4 Plume 4		
		4.3 Ryznar Index Results	4-4	
Section	5.0	REFERENCES	5-1	
FIGURI				
Figure 1		Vicinity Map		
Figure 1 Figure 2		PCE Plume Boundary, Shallow Upper Aquifer		
Figure 3		PCE Plume Boundary, Intermediate Upper Aquifer		
Figure 4		TCE Plume Boundary, Shallow Upper Aquifer		
Figure 5		TCE Plume Boundary, Intermediate Upper Aquifer		
Figure 6		Total COC Plume Boundary, Shallow Upper Aquifer		
Figure 7		Total COC Plume Boundary, Intermediate Upper Aquifer		
Figure 8		COC Concentrations in Groundwater (1997 – 2002)		
Figure 9		MW-04 COC Concentrations, 1997 to 2002		
Figure 10		MW-06 COC Concentrations, 1997 to 2002		
Figure 11		MW-07 COC Concentrations, 1997 to 2002		
Figure 12		MW-18 COC Concentrations, 1997 to 2002		
Figure 13		MW-16 COC Concentrations, 1997 to 2002		
Figure 14		MW-19 COC Concentrations, 1997 to 2002		
Figure 15		MW-02 COC Concentrations, 1997 to 2002		
Figure 16		MW-101 COC Concentrations, 2000 to 2002		
Figure 18		MW-102 COC Concentrations, 2000 to 2002 MW-103 COC Concentrations, 2000 to 2002		
Figure 18		w-103 COC Concentrations, 2000 to 2002		

TABLE OF CONTENTS

MW-104 COC Concentrations, 2000 to 2002
MW-105 COC Concentrations, 2000 to 2002
MW-01 COC Concentrations, 1997 to 2002
MW-15 COC Concentrations, 1997 to 2002
PZ-05 COC Concentrations, 1999 to 2002
MW-20 COC Concentrations, 1997 to 2002
Fall 2002 Groundwater Elevations and Contours

TABLES

Table 1	Well Construction Details	
Table 2	Groundwater Sampling Locations	
Table 3	IDW Analytical Data for Volatile Organic Compounds	
Table 4	IDW Analytical Data for Polynuclear Aromatic Hydrocarbons	
Table 5	IDW Analytical Data for Polychlorinated Biphenyls	
Table 6	2002 Groundwater Analytical Data, Chemicals of Concern and Associated	
	Breakdown Products	
Table 7	1997 to 2002 Groundwater COC Analytical Data	
Table 8	Ryznar Index Parameter Results	
Table 9	Fall 2002 Groundwater Elevation Data	

APPENDICES

Appendix A	2000 Plume Footprints

Appendix B Boring Logs
Appendix C Well Development Datasheets Appendix D Quality Assurance Review Report **SECTIONONE** Introduction

1.0 INTRODUCTION

This technical memorandum describes the results of drilling, monitoring well installation, and groundwater sampling activities conducted at the NW Pipe and Casing/Hall Process Company (NWPC) site in Clackamas, Oregon (Figure 1). URS conducted these activities in support of the Remedial Design (RD) for Groundwater Operable Unit (OU) 2. The OU 2 selected remedy is described in the Record of Decision (ROD) for OU 2 [U.S. Environmental Protection Agency (EPA), 2001].

Historical mishandling of chlorinated solvent wastes generated during pipe-coating activities at the site resulted in contamination of groundwater with volatile organic compounds (VOCs). The ROD identifies three VOCs as Chemicals of Concern (COCs): tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride (VC). The COCs have been identified at four groundwater contaminant plumes, referred to as Plumes 1 through 4. The plume footprints, as defined by the 2002 PCE and TCE groundwater concentrations, are shown on Figures 2 through 5. Plumes 1, 2, and Plume 4 are commingled, with Plume 4 being a smaller area of high COC concentrations within the larger Plume 1 footprint. Total COC plume maps, based on the sum of PCE, TCE, and VC concentrations, are shown on Figures 6 and 7. For comparison, the 2000 plume footprints, as illustrated in the ROD, are provided in Appendix A. The remediation goals (RGs), as specified in the ROD for PCE, TCE, and VC, are 1.0 µg/L, 1.6 µg/L, and 1.0 µg/L respectively. The selected remedy calls for the installation of groundwater circulation wells (GCWs), using in-well air sparging to treat and contain the most highly contaminated groundwater, and use of natural processes to address lesser-contaminated groundwater at the site.

2.0 SUMMARY OF DRILLING AND MONITORING WELL INSTALLATION

2.1 Monitoring Well Installation

URS installed eight new monitoring wells at the site. Boring logs are provided in Appendix B and well construction details are provided on Table 1. The monitoring wells (see locations on Figures 2 through 8) were installed at the following locations:

- Installation of a shallow and intermediate upper aquifer monitoring well pair (MW-113 and MW-114) immediately down gradient of the former drum burial area at Excavation Area (EA) 2. During the Remedial Action (RA) for Soil OU 1 (completed in 2001), VOC-containing non-aqueous phase liquids (NAPLs) were identified at EA 2. The purpose of this monitoring well pair is to evaluate whether dissolved-phase VOC contamination is associated with the small quantities of NAPL.
- Installation of a shallow, intermediate, and deep upper aquifer well cluster (MW-115, MW-116, and MW-119) immediately downgradient of the former buried "slotted tank" at former Plant 2. The tank was removed during the OU 1 RA. The purpose of this monitoring well cluster is to evaluate whether dissolved-phase VOC contamination is associated with the NAPL that is present in the soil at former Plant 2.
- Installation of a deep upper aquifer well (MW-120) at the location of the former slotted tank at former Plant 2. The purpose of this monitoring well is to evaluate the depth of NAPL and dissolved-phase VOC contamination below the slotted tank.
- Installation of a shallow and intermediate upper aquifer well pair (MW-117 and MW-118) down gradient of the former slotted tank. The purpose of this monitoring well pair is to evaluate the downgradient extent of dissolved-phase VOC contamination associated with NAPLs in the soil at Plant 2.

The shallow and intermediate upper aquifer borings were advanced using a B-16 ODEX drilling rig. The deep upper aquifer borings were advanced using a Foremost DR-24 dual-wall air-rotary drilling rig. Drill cuttings and formation water discharged directly to a temporary holding container. Once full, the container was moved to the investigative derived waste (IDW) storage area. Water was pumped from the container into two 4,000 gallon Baker tanks. Soil cuttings were placed into two 20-yard roll-off boxes.

The monitoring wells were completed as shown on Table 1 and Appendix B. Following completion, each monitoring well was developed using submersible pumps. The wells were surged multiple times, and specific conductance, pH, turbidity, dissolved oxygen, and temperature were monitored. Development was terminated once the measured parameters stabilized and the water became relatively clear (turbidity typically less than 100 NTU). Well development datasheets are provided in Appendix C.

2.2 Observations During Drilling

2.2.1 Geologic Conditions

A URS geologist logged the drill cuttings during boring advancement, and noted any visual or olfactory evidence of contamination. Soil samples (i.e. split spoons or cores) were not collected. Overall, the geologic formations observed were consisted with those previously identified at the site. Silt with clay and clayey silt (the upper silt unit) was observed to a depth of five to seven feet. Underlying this is the upper aquifer (the upper gravel unit), which consists of gravel with sand and silt or gravel with sand. The silt content generally decreased with depth. At MW-119, the upper gravel unit is underlain by sandy silt to silty sand (the lower silt unit) at a depth interval of 113 to 116 feet. The lower silt unit, in turn is underlain by the lower aquifer (the lower gravel unit), consisting of gravel with sand to a depth of 136 feet. Sandy silt was encountered at 136 feet and the boring was terminated in the sandy silt at a depth of 140 feet.

At MW-120, the upper gravel unit includes a gravel with silt from 105 to 108 feet. The upper gravel unit is underlain by silt/siltstone (presumably correlative with the lower silt unit at MW-119) at 122 feet. The boring was terminated in the silt at a depth of 125 feet.

2.2.2 Observed Evidence of Contamination

Visual and olfactory evidence of contamination was observed during advancement of several borings, as discussed below. Visual evidence consisted of a sheen on drill cuttings and/or formation water produced during drilling. Olfactory evidence consisted of a "creosote-like" odor.

At the MW-113/MW-114 well pair downgradient of the drum burial area, a slight sheen was noted on the cuttings at a depth of 10 feet at MW-113. No sheen was observed during advancement of MW-114.

At the MW-115/MW-116/MW-119 well cluster immediately down gradient of the former slotted tank, a sheen and creosote odor was first observed at a depth of 13 feet. Both the sheen and creosote odor became quite pronounced below a depth of 20 feet to about 60 feet. At MW-119, the sheen and odor became progressively less pronounced/more "spotty" with depth. A sheen was not observed below 75 feet, although a weak creosote odor was noticeable to a depth of 116 feet (the bottom of the lower silt unit).

At the MW-117/MW-118 well pair, located further downgradient from the MW-115/MW-116/MW-119 well cluster, a sheen was not observed, and only a slight creosote odor was noted from a depth of 13 to 20 feet.

Finally, at MW-120, located at the approximate location of the former slotted tank, a spotty sheen and weak creosote odor was first observed at 7 feet (the top of the upper gravel). At 21 feet the sheen became more continuous and the odor more prominent. At 35 feet the sheen became continuous on the soil cuttings and the odor very noticeable. At 50 feet, the sheen became less prominent/more spotty. At 95 feet the sheen became very spotty and the odor

moderate. At 99 feet no sheen was observed, and the odor was weak. Finally, a creosote odor was not observed below 108 feet (below the gravel with silt from 105 to 108 feet).

In summary, strong evidence of NAPL (a sheen) was observed at the location of the former slotted tank (MW-120), and about 150 feet down gradient (at the MW-115/MW-116/MW-119 well cluster). The evidence was most strong (as indicated by a nearly continuous sheen on the drill cuttings) from about 20 to 60 feet, with the sheen becoming more spotty below that depth. At the MW-113/MW-114 well pair, only a slight sheen was observed at 10 feet.

These observations are consistent with the apparent magnitude of the NAPL source at the drum burial area and the slotted tank. At the drum burial area, about 50 NAPL-containing 55-gallon drums were removed during the OU 1 RA. This places a maximum limit on the source volume of 2,750 gallons of NAPL. At the slotted tank, the volume of NAPL was likely greater. Because of the slotted nature of the tank, it appears to be a disposal site for solvent/coal tar mixtures. Pipe coating apparently occurred at the site from 1956 to 1985. Given the period of operation during which disposal at the slotted tank could have occurred, it is likely that the total volume of source material at Plant 2 greatly exceeds that of the drum burial area, which is consistent with the NAPL observations during drilling.

3.0 SAMPLING ACTIVITIES

URS collected groundwater samples at the locations shown on Table 2. In addition, URS collected samples of Investigative Derived Wastes (IDW) for waste characterization prior to disposal, and attempted to collect a sample of NAPL at the former Plant 2 area. Sampling and Quality Assurance/Quality Control (QA/QC) procedures for all sampling activities are described in detail in the Quality Assurance Project Plan and Sampling and Analysis Plan (URS, 2002).

Groundwater Sampling 3.1

Groundwater sampling activities were conducted at 49 monitoring wells. Prior to the sampling activities, URS collected groundwater elevation data from 50 monitoring wells (Table 9). Groundwater elevation contours for the shallow upper aguifer are shown on Figure 25. On the Oregon Department of Transportation (ODOT) property, the groundwater flow direction is generally to the north. The groundwater flow direction is somewhat irregular on the southern portion of the site. Specifically, a groundwater depression was observed in the vicinity of MW-115 through MW-119. Water level readings were collected shortly after installation and development of MW-115 through MW-119, and the groundwater depression observed at this location may reflect groundwater withdrawals associated with development of these wells.

Forty-nine of the wells were sampled, and all groundwater samples were analyzed for VOCs using Method OLC03.2 or OLM04.2. A groundwater sample was not collected from monitoring well MW-112. Wells with casing diameters of 2 inches or greater were sampled using passive diffusion sample bags (PDSBs). For monitoring wells with casing diameters of 2 inches or greater and 4-, 5- or 6-foot screened intervals (39 wells), one diffusion bag was deployed so that the center point of the PDSB sampler was at the vertical midpoint of the saturated well-screen length. Six wells at the site have 10-foot screened intervals and were sampled using two PDSBs, one above and one below the midpoint of the screen. The PDSBs do not fit in wells with casing diameters smaller than about 2 inches; therefore, three wells with approximately 1-inch diameter casings (PZ-05, PZ-06, and PZ-13) were sampled using the low-flow sampling procedure only.

Four wells (one well located in each of the four plumes) were also tested for the parameters used to calculate the Ryznar Index (calcium, total alkalinity, and total dissolved solids). In order to test for the Ryznar parameters, these four wells (MW-04, MW-15, MW-20, and MW-103) were sampled using low-flow sampling procedures (in addition to the PBSBs for VOCs). Low-flow procedures involved purging groundwater at a rate that minimized drawdown of the water level in the well during sampling. Low-flow sampling included the measurement of field parameters (pH, specific conductance, temperature, dissolved oxygen, and turbidity). Groundwater samples were collected only after the field parameter measurements had stabilized.

Groundwater analytical results are discussed in detail in Section 4.0.

3.2 **IDW Characterization**

Drilling, monitoring well installation, and groundwater sampling activities generated soil and water IDW. Water IDW was stored in two 4,000 gallon Baker tanks. At total of 7,386 gallons of water was generated during the field activities. Soil cuttings were stored in two 20-yd³ rolloff boxes. A total of about 15 yd³ of soil was generated during drilling.

A single water sample was collected from each Baker tank using a disposal HDPE bailer. Both samples were analyzed for VOCs (Method 8260), polynuclear aromatic hydrocarbons (PAHs) (Method SW-846 8270C) and polychlorinated biphenyls (PCBs) (Method SW-846 8082). The analytical results are provided in Tables 3 through 5. Based on the results, the water was classified as a non-hazardous waste, and disposed of at Spencer Environmental's water treatment facility at 6400 SE 101st Ave, Portland, Oregon.

A single soil sample was collected from each roll-off box. Each sample consisted of a composite of four samples from each roll-off box. The samples were analyzed by the same methods listed above for the water IDW samples. The analytical results are provided in Tables 3 through 5. The soil analytic data were compared with the OU 1 Excavation Criteria (EC). Because the soil results did not exceed the EC for each of the OU 1 COCs, the soil IDW was placed on site within the footprint of OU 1 Excavation Area 6.

3.3 Plant 2 NAPL Characterization

URS attempted to collect a sample of the NAPL from the vicinity of the former slotted tank at Plant 2. The intention of this effort was to characterize the composition of the NAPL, via analysis for VOCs, PAHs, and PCBs, and to determine the transport properties of the NAPL, via viscosity, capillary pressure, interfacial tension, and density analyses. Six test pits were excavated downgradient of the former slotted tank. All test pits were excavated to the depth of groundwater, which was approximately 10 feet. Soils exposed in the test pits consisted of clayey silts and silt with gravel to a depth of about 8 feet, and gravel (upper aquifer) below this depth. NAPL was observed discharging from the gravel into the test pit. At all locations, the NAPL formed a continuous sheen on the surface of the water. However, the sheen was not of sufficient thickness to permit collection of a sample.

4.0 GROUNDWATER SAMPLING RESULTS

The primary purpose of the 2002 groundwater sampling event was to assist with decision making for GCW placement as part of the OU 2 RA. The ROD specifies use of GCWs to address "highly contaminated groundwater" and natural processes to address "lesser contaminated groundwater". The work described in this document focused on evaluating COC trends at each monitoring well to identify locations where significant COC reduction has occurred. Relying on natural processes is appropriate at locations where significant COC reduction is occurring or COC concentrations remain near the RGs. GCWs will be proposed for locations where significant COC reduction is not occurring and COC concentrations are well above the RGs.

Historic groundwater data provide considerable insight with respect COC trends. However, during the development of the RD strategy, several data gaps were identified that necessitated groundwater sampling in 2002 for the following reasons:

- 1. During the 2001 groundwater sampling event, PDSBs were used to collect groundwater samples at all monitoring locations. At four locations, samples were also collected using the low-flow pumping method. During previous monitoring events, only the low-flow pumping methods were used. For the 2001 sampling event, COC concentrations generated by the PDSB sampling method were consistently higher than those generated by the low-flow pumping method. In addition, COC concentrations at several monitoring locations were higher in 2001 than during previous monitoring events, including at locations where COC concentrations had been consistently decreasing over time. Therefore, the 2002 groundwater sampling used PDSBs at all locations to evaluate the extent to which the higher concentrations observed in 2001 were the result of the PDSB sampling method. Duplicate samples were collected at selected wells using the low-flow pumping method. If the analytical results generated by the PDSBs were lower this year than in 2001 (in particular, at locations where contaminant concentrations had been on the decline prior to 2001), then the increase in contaminant concentration seen in 2001 would be attributed to conversion to the PDSB sampling method, and the overall interpretation would be that contaminant concentrations are continuing to decrease. Otherwise, if the results were similar to or higher this year than in 2001, then the increase seen in 2001 and again as part of this sampling event would be attributed to an actual increase in groundwater contaminant concentrations, regardless of any affect associated with the PDSB sampling method.
- 2. Several wells at each plume have been selected as monitoring points for evaluating the extent to which natural processes are addressing lesser-contaminated groundwater. At monitoring well locations with decreasing contaminant concentrations or historically low concentrations, it appears that natural processes are reducing COC concentrations to the extent that GCWs may not be necessary to treat groundwater at these locations. The 2002 sampling event was proposed to evaluate the extent to which previously observed trends in COC concentrations are consistent with the interpretation that natural processes

are continuing to reduce COC concentrations. Specifically, if the monitoring results indicate a continuation of previously observed contaminant reduction trends, then these locations would be selected as candidate locations for allowing natural processes to continue as a means of improving groundwater quality.

- 3. The 2002 groundwater samples were analyzed for the parameters needed to calculate the baseline Ryznar Index values for each plume. The Ryznar Index is an indicator for the potential of GCWs to become fouled during operation.
- 4. Finally, at several monitoring locations, only two sampling events have been completed. The 2002 sampling event generated additional data to facilitate interpretation of the trend in COC concentrations at these locations.

Table 6 summarized the 2002 groundwater COC analytical data as well as data for the COC breakdown products. Table 7 summarizes the historic COC concentration and trends at each monitoring location. Various COC plume maps are provided on Figures 2 through 8.

Effect of PBSDs on Analytical Results 4.1

PDSB and low-flow sampling was conducted at MW-04, MW-15, MW-20, and MW-103 (Table 6). At MW-15, MW-20, and MW-103, the results for both methods were very similar, with no large differences in COC concentrations between the two methods. At MW-04, low-flow sampling resulted in much higher PCE and TCE concentrations, but a much lower VC concentration. In particular, PCE was not detected by the PDSB method whereas the low-flow method detected PCE at a concentration of 32.2 µg/L. Overall, the two methods appear to general results that are comparable.

4.2 **Overall COC Trends**

4.2.1 Plume 1

Overall, the 2002 analytical data indicate that COC concentrations are continuing to decrease through most of the footprint of Plume 1. Notable contaminant reduction has occurred at MW-04, MW-06, MW-07, and MW-18 (mainly PCE) (Figures 9 through 12). At MW-16 and MW-19 (Figures 13 and 14), PCE and TCE have increased in the last two years. At MW-111, located off site to the north of Lawnfield Road, PCE and TCE have been detected at 1 µg/L, indicating potential migration of the plume off site. At MW-12, TCE has been detected at 1.5 µg/L, indicating potential expansion of the plume to the east (although 1.5 µg/L is below the RG of 1.6 μg/L). At the remaining monitoring well locations, COC concentrations are generally below the RGs or non-detect.

Overall, the Plume 1 footprint has not changed significantly. The shallow upper aquifer PCE plume (Figure 2) is slightly narrower due to the MW-07 concentration being below the RG. However, the plume now extends further north due to the 1-µg/L detection at MW-111. The intermediate upper aguifer PCE plume (Figure 3) is very limited in extent due to the MW-17 and

MW-18 COC concentrations being below the RG. The plume is confined to the area around MW-16.

The shallow upper aquifer TCE plume (Figure 4) is unchanged, with the exception of the 1-µg/L detection at MW-111, which is below the RG, but may indicate migration of the plume north. The intermediate upper aquifer TCE plume (Figure 5) is very limited in extent due to the non-detection at MW-17. The plume is confined to the area around MW-16 and MW-18, although 1.5-µg/L detection at MW-112, which is below the RG, may indicate expansion of the plume to the east.

4.2.2 Plume 2

COC concentrations at Plume 2 are somewhat variable. At MW-02 (Figure 15), PCE is below the RG, TCE is near the RG, but VC remains relatively high. At MW-101 through MW-103 (Figures 16 through 18), COC concentrations are variable and show no particular trend. At MW-104 and MW-105 (Figures 19 and 20), COC concentrations have increased slightly. At the remaining monitoring well locations, COC concentrations are generally below the RGs or non-detect.

PCE and TCE analytical data for new monitoring wells MW-113 through MW-118 indicate that the Plume 2 boundaries extend further south (toward the drum burial area), east (toward former slotted tank at Plant 2), and northeast within both the shallow and intermediate upper aquifer. Plume 2 appears to be comingled with Plume 1. In the vicinity of Plant 2, the plume is confined to the shallow and intermediate upper aquifer. At MW-119 and MW-120, screened within the deep upper aquifer, COC concentrations were non-detect.

4.2.3 Plume 3

COC concentrations at Plume 3 are somewhat variable. At MW-01 (Figure 21) PCE and TCE have increased slightly after a period of decreased concentrations. At MW-15 (Figure 22), PCE and TCE have increased after a period of significant reduction in concentration. At PZ-05 (Figure 23), PCE and TCE have increased slightly after a period of slight decrease. At the remaining monitoring well locations, COC concentrations are either slightly above the RGs, below the RGs, or non-detect.

The overall footprint of Plume 3 has not changed significantly.

4.2.4 Plume 4

Plume 4 is comingled with Plume 1. At MW-20 (Figure 24), COC concentrations have decreased slightly after a period of increased concentration. At the remaining monitoring location (MW-17), COC concentrations are below the RGs or non-detect.

The shallow upper aquifer PCE and TCE plume footprint is unchanged. The intermediate upper aquifer PCE and TCE plume is non-existent due to the concentrations being below the RG or non-detect at MW-17.

4.3 Ryznar Index Results

The Ryznar Stability Index (RSI) predicts the corrosive or incrusting tendencies of a particular water. It is widely used for predicting the reaction of solid metals in saturated conditions. A water is corrosive if the index is higher than 7 and incrusting if lower than 7. The RSI is calculated based on alkalinity, total dissolved solids, total calcium, and pH data using the following formula:

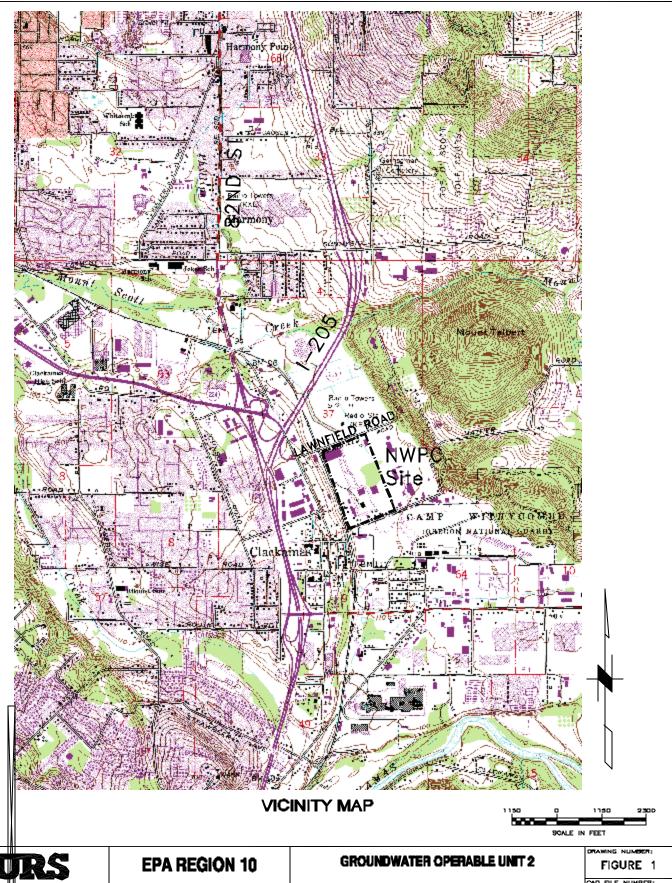
$$I = S - C - pH$$

where I is the Ryznar Index, S is a factor derived from a standard curved developed for total dissolved solids data, and C is a factor based on a standard curve developed for alkalinity and total calcium data.

The analytical results for the RSI parameters and the calculated RSI values are summarized in Table 8. The RSI values for all four plumes range from 8.49 to 9.80, indicating a potential for corrosion.

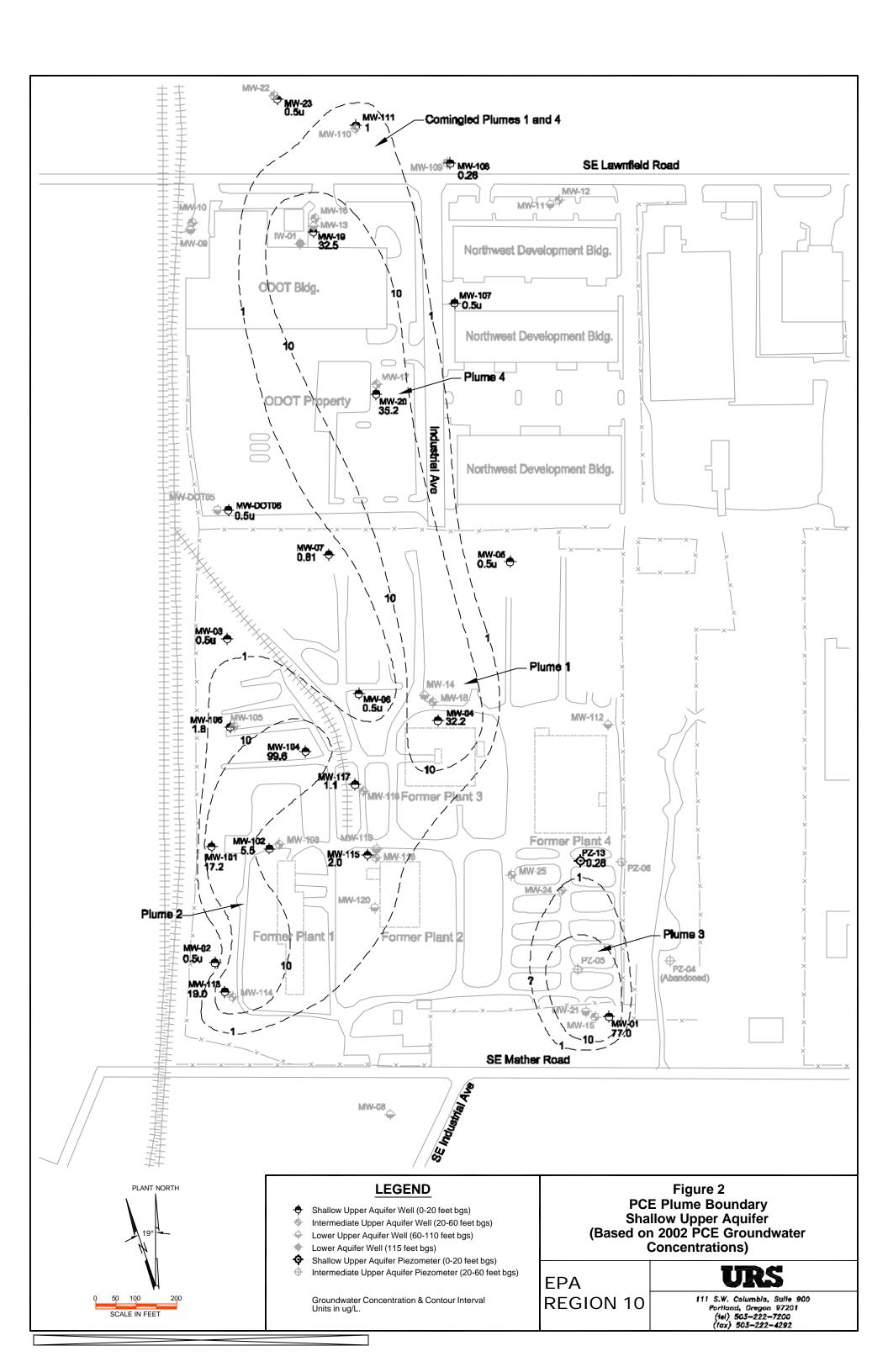
The *Remedial Design Strategy Technical Memorandum* (URS, May 2002) calculated RSI values based on historic analytical data for the site. The results ranged from 7.9 to 8.6. The technical memorandum incorrectly stated that these values indicated a potential for "inorganic fouling" (i.e. incrustation). In fact, these values indicate a potential for corrosion, which is consistent with the RSI values calculated above using the October 2002 data. Corrosion can be mitigated by using PVC or stainless steel well casing and screen.

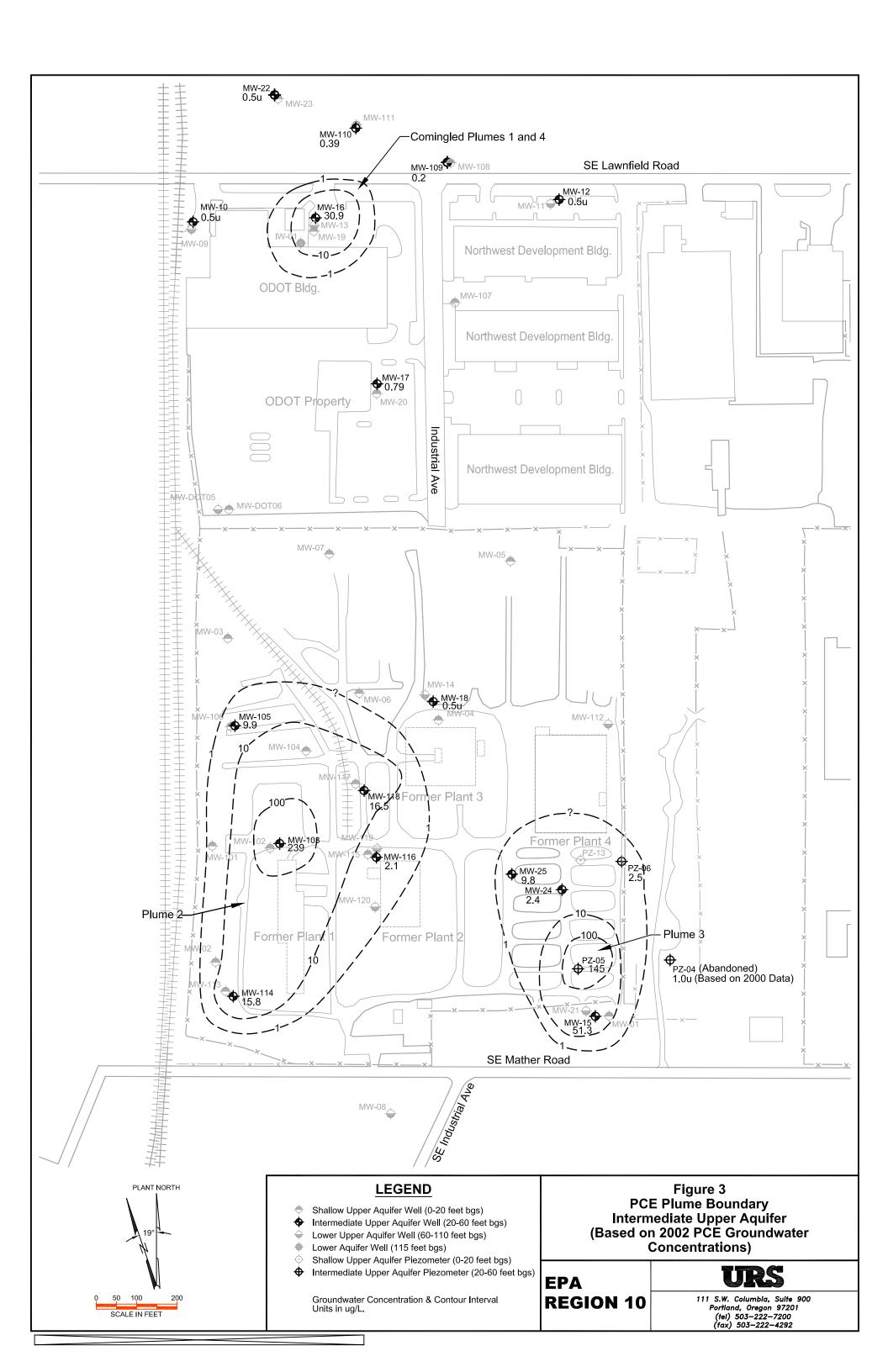
SECTIONFIVE References

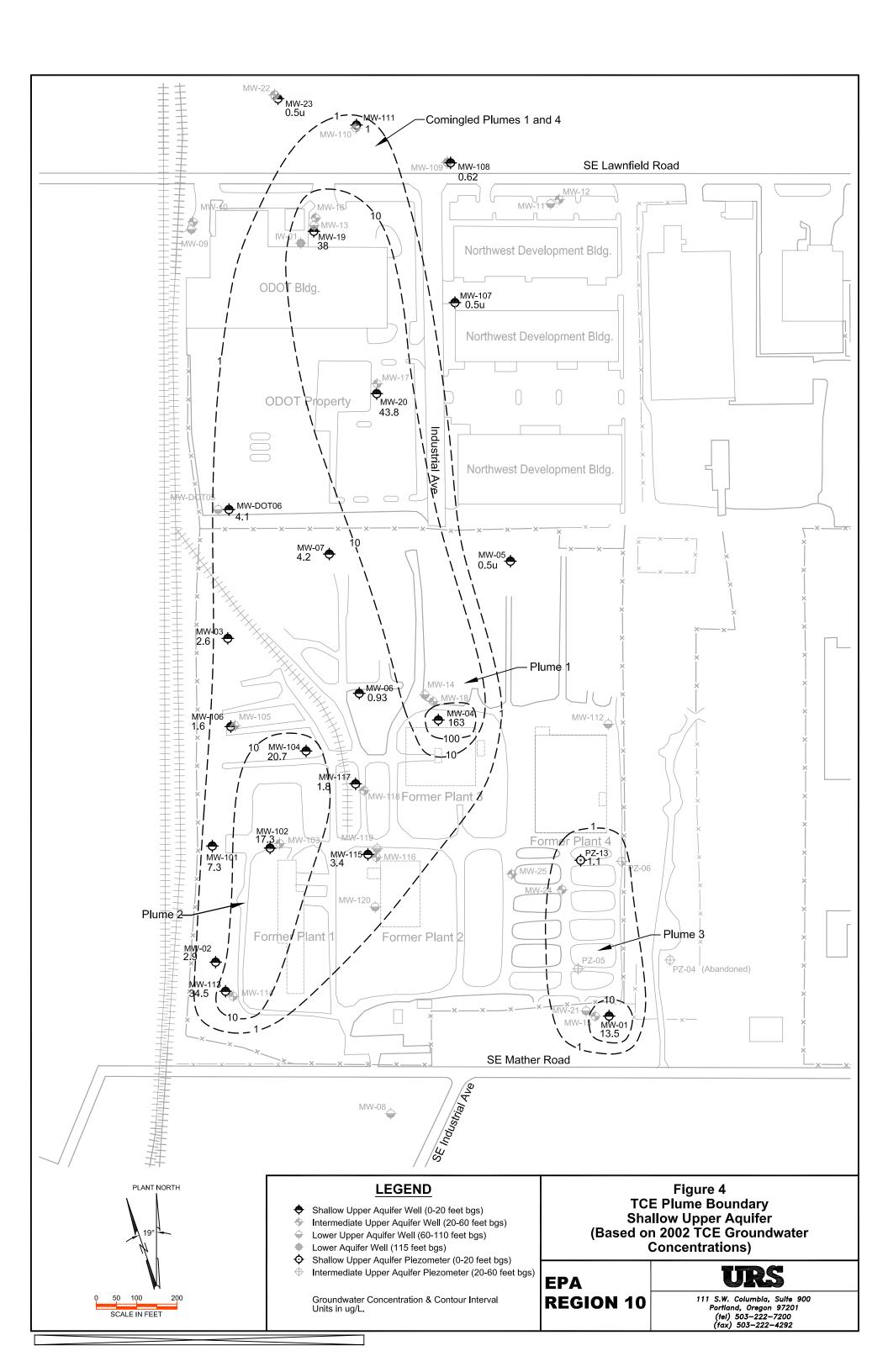

URS Corporation. May, 2002. *Remedial Design Strategy Technical Memorandum*. Prepared for U.S. Environmental Protection Agency.

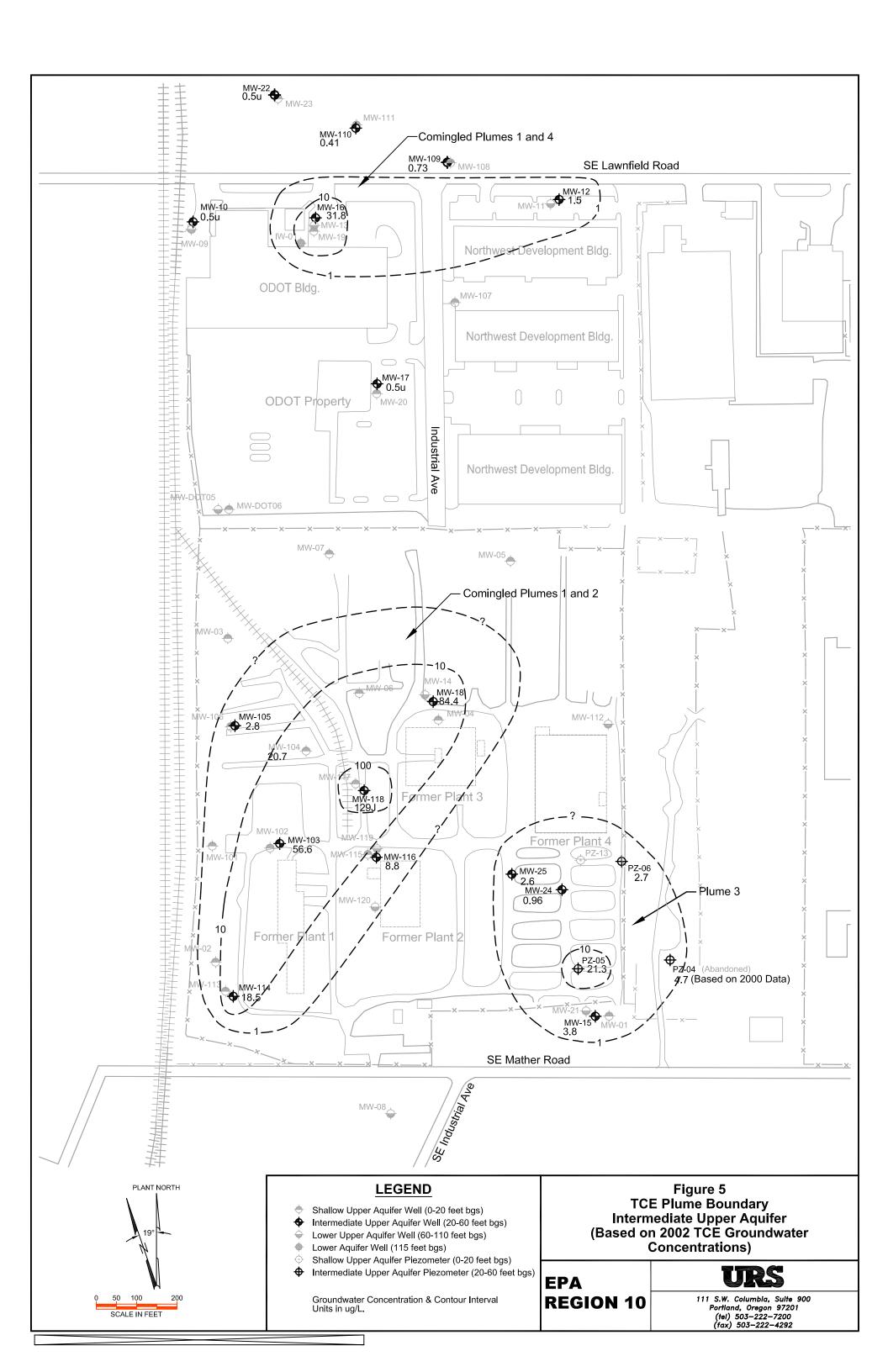
- URS Corporation. July 26, 2002. *Quality Assurance Project Plan and Sampling and Analysis Plan.* Prepared for U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency. September 2001. *Record of Decision*. Northwest Pipe and Casing Company/Hall Process Company Groundwater Operable Unit (OU 2), Clackamas County, Oregon. CERCLIS Identification Number: ORD 980988307.

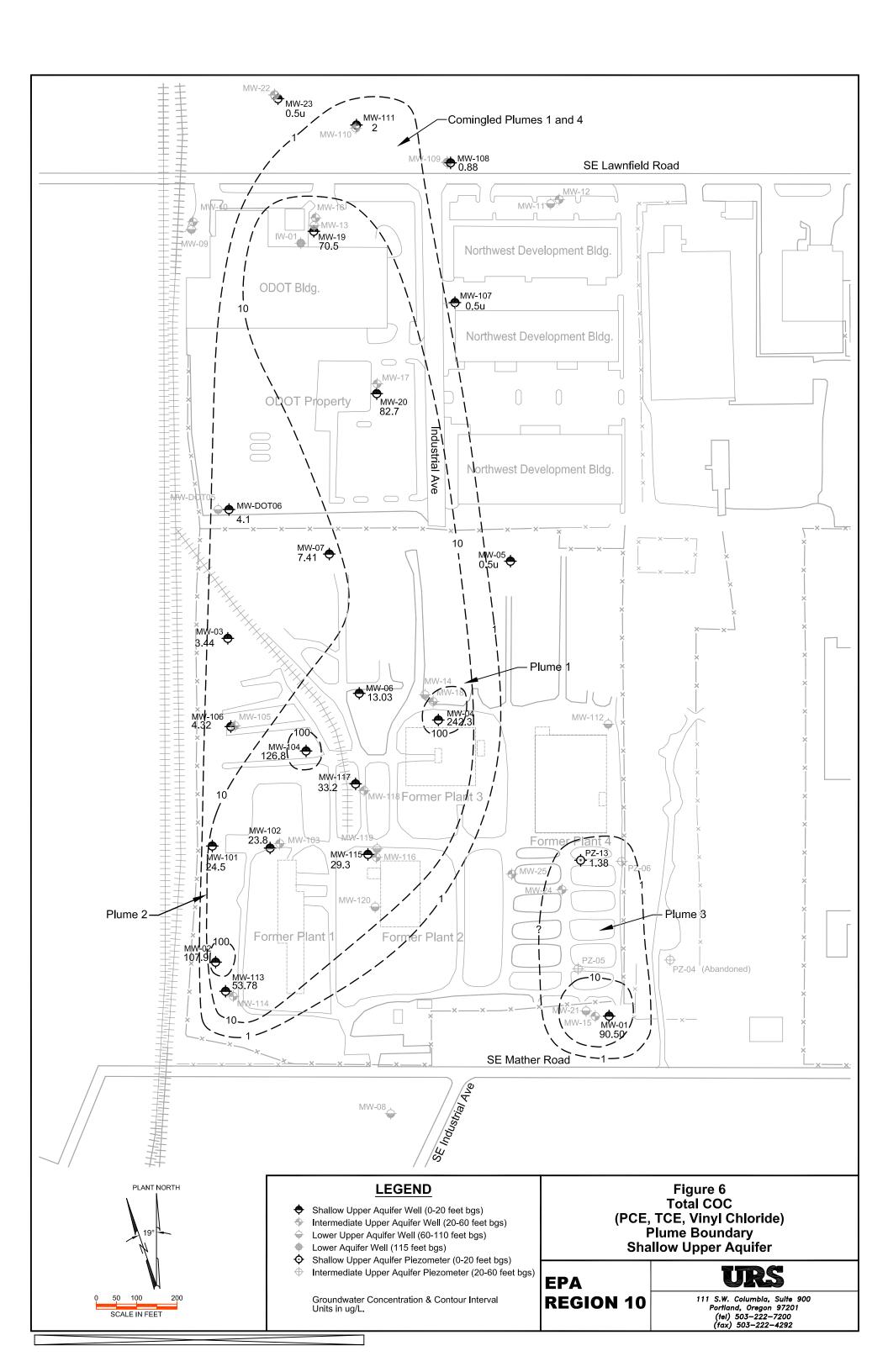
FIGURES

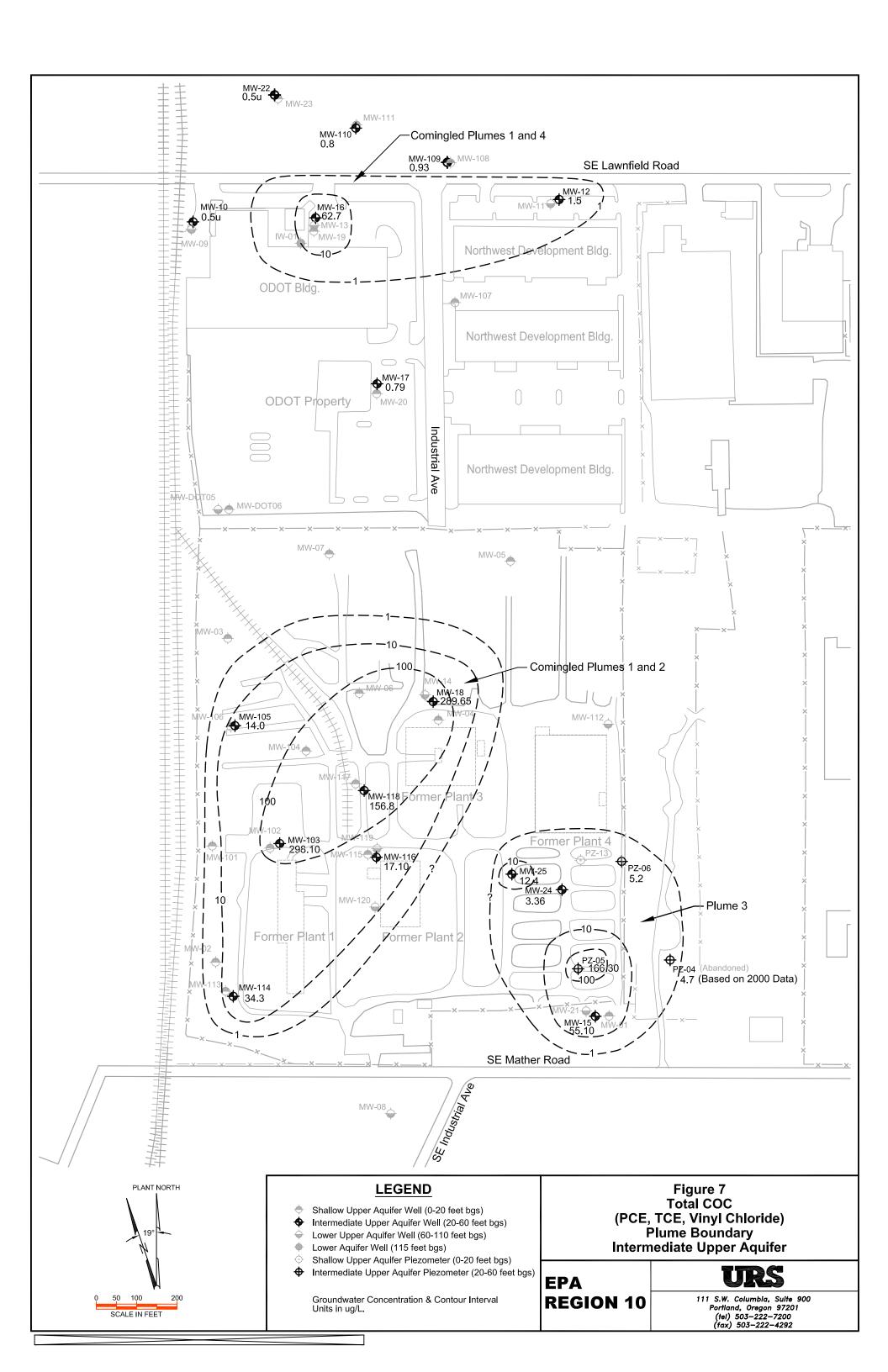



111 5.W. Solumbia, Suite 800 Partiand, Oregon 97201 (tel) 503-222-7200 (tax) 403-222-4292


NW PIPING & CASING / HALL PROCESS COMPANY VICINITY MAP


C-01


В



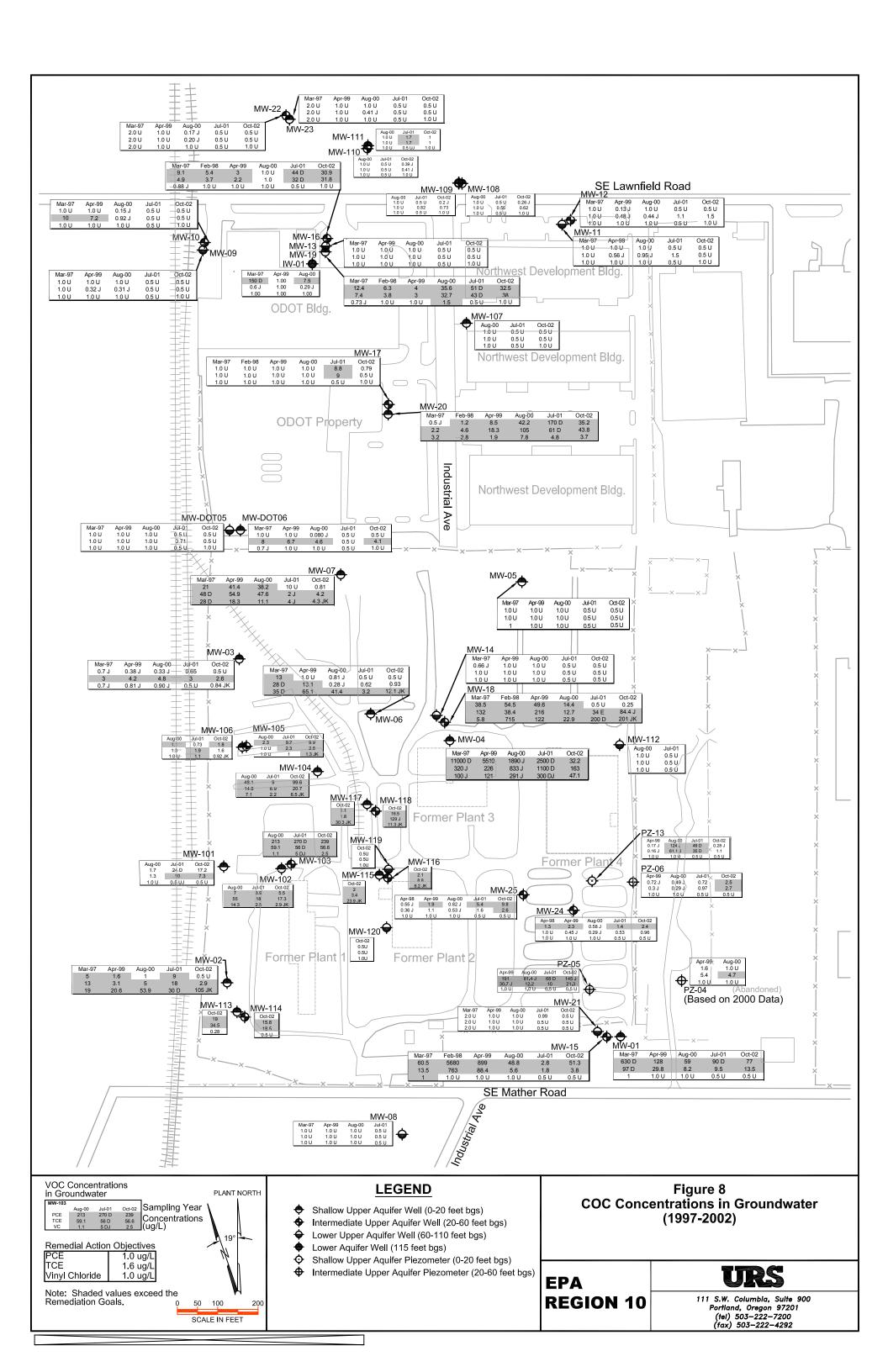


Figure 9
MW-04 COC Concentrations
1997 to 2002

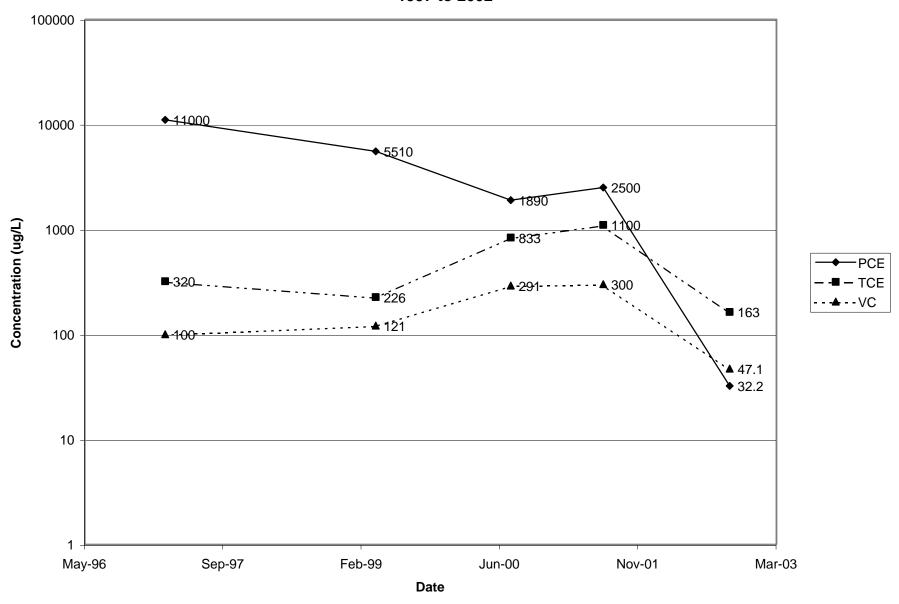


Figure 10 MW-06 COC Concentrations 1997 to 2002

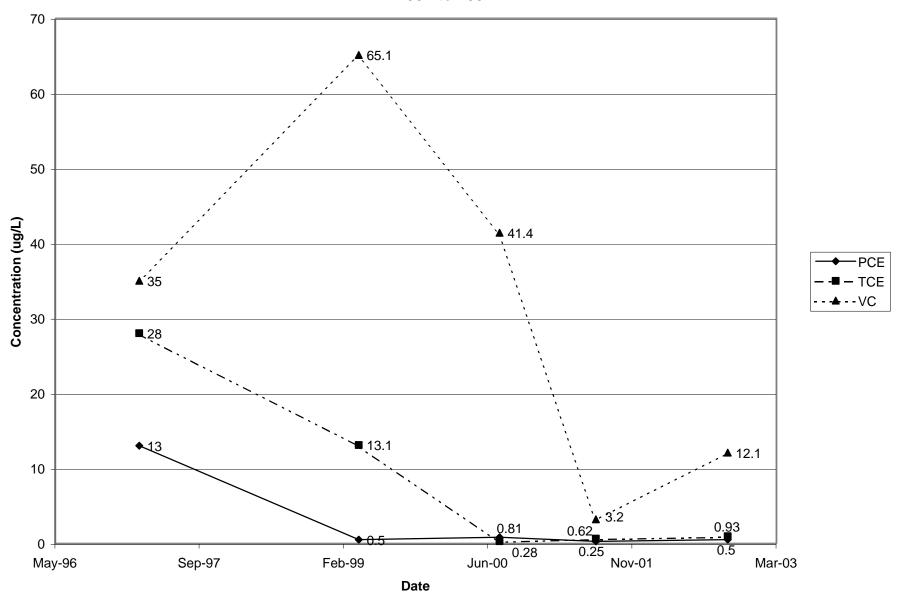


Figure 11
MW-07 COC Concentrations
1997 to 2002

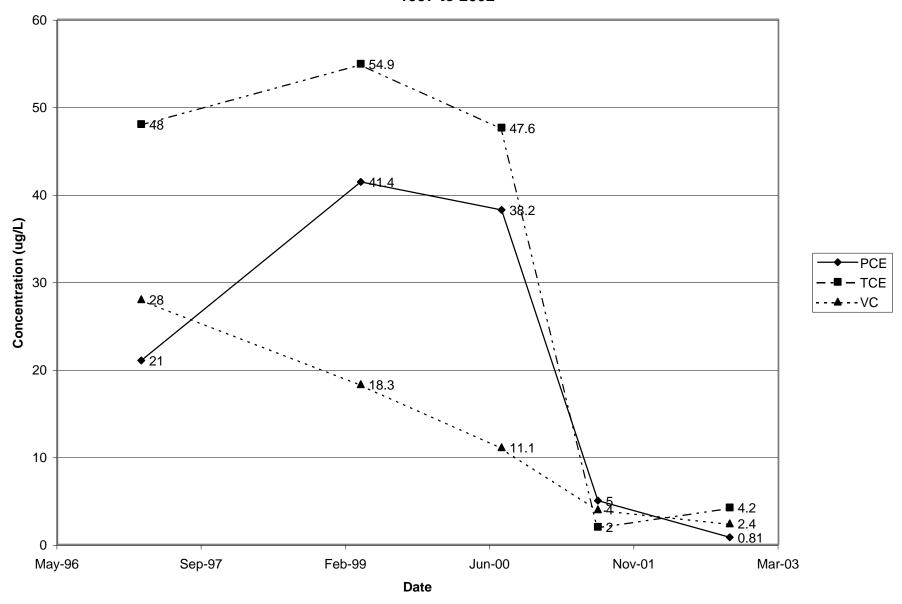


Figure 12 MW-18 COC Concentrations 1997 to 2002

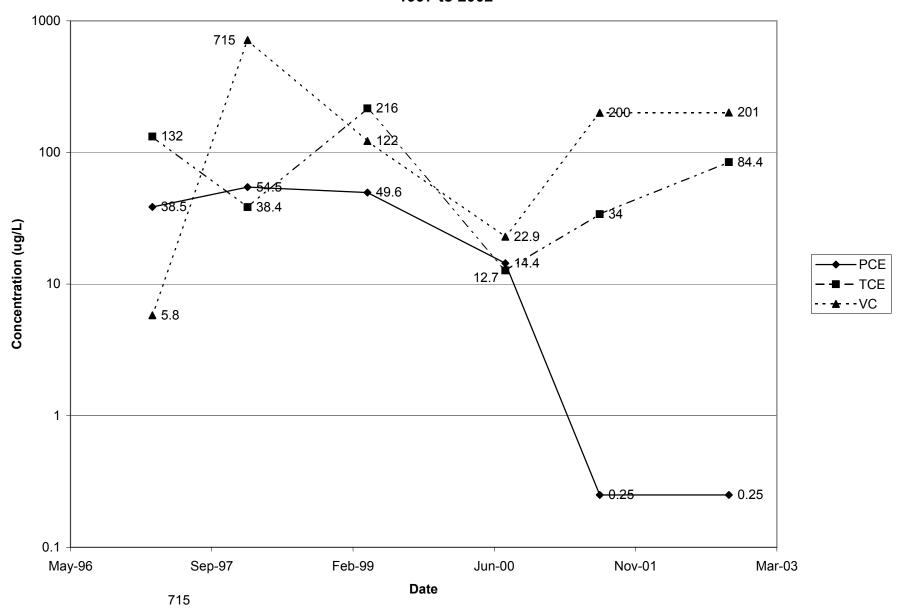


Figure 13 MW-16 COC Concentrations 1997 to 2002

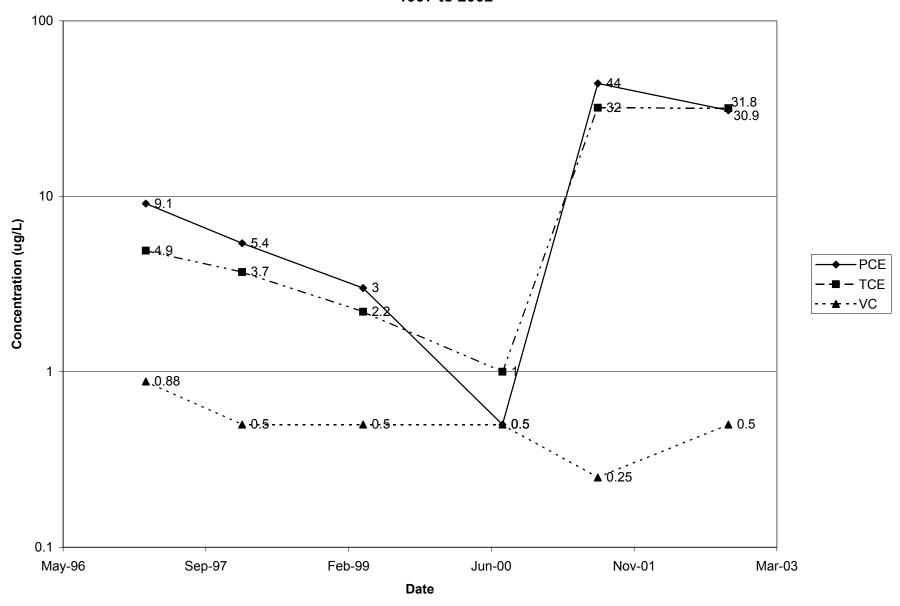


Figure 14
MW-19 COC Concentrations
1997 to 2002

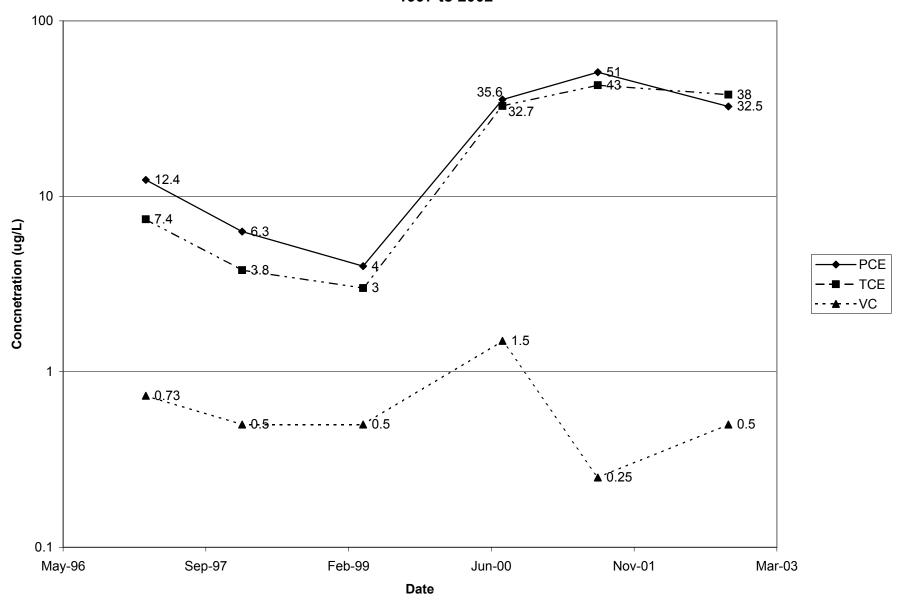


Figure 15
MW-02 COC Concentrations
1997 to 2002

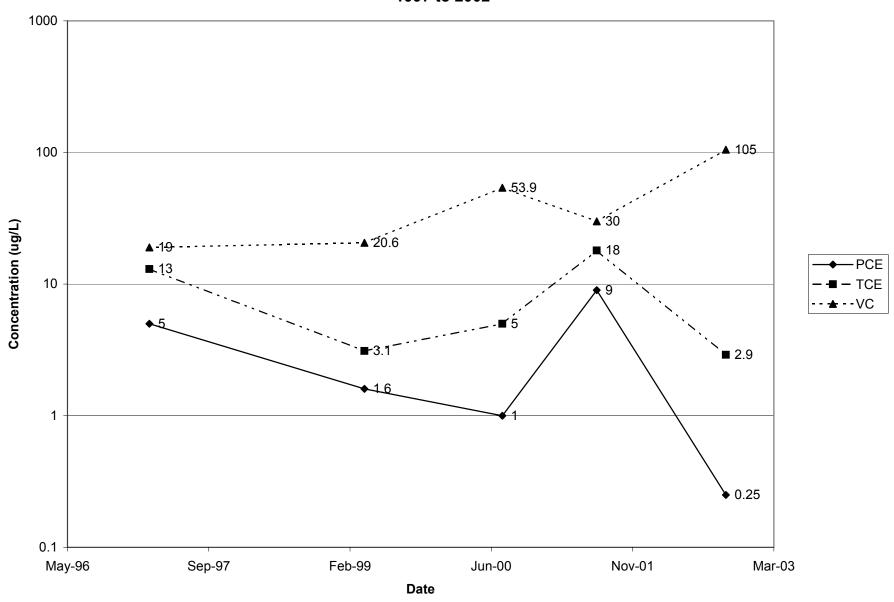


Figure 16
MW-101 COC Concentrations
2000 to 2002

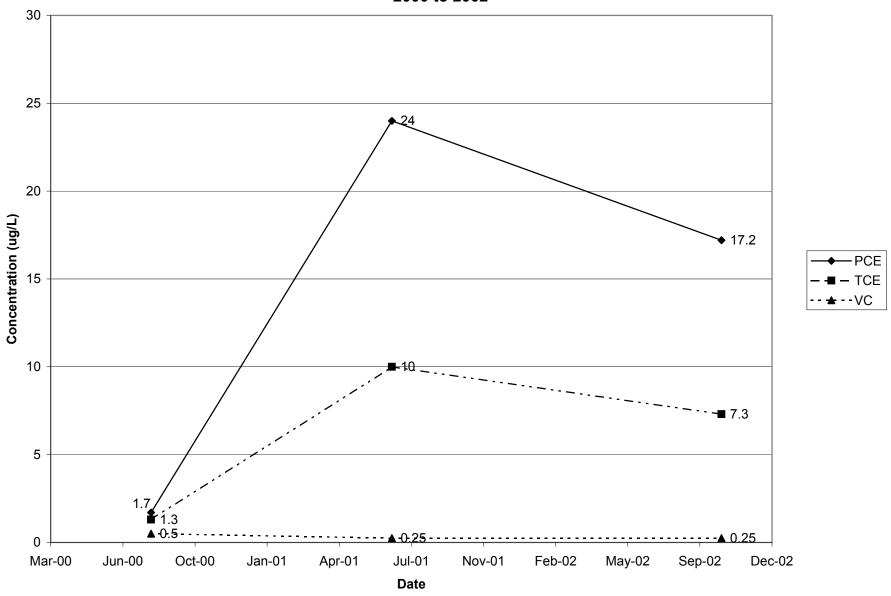


Figure 17
MW-102 COC Concentrations
2000 to 2002

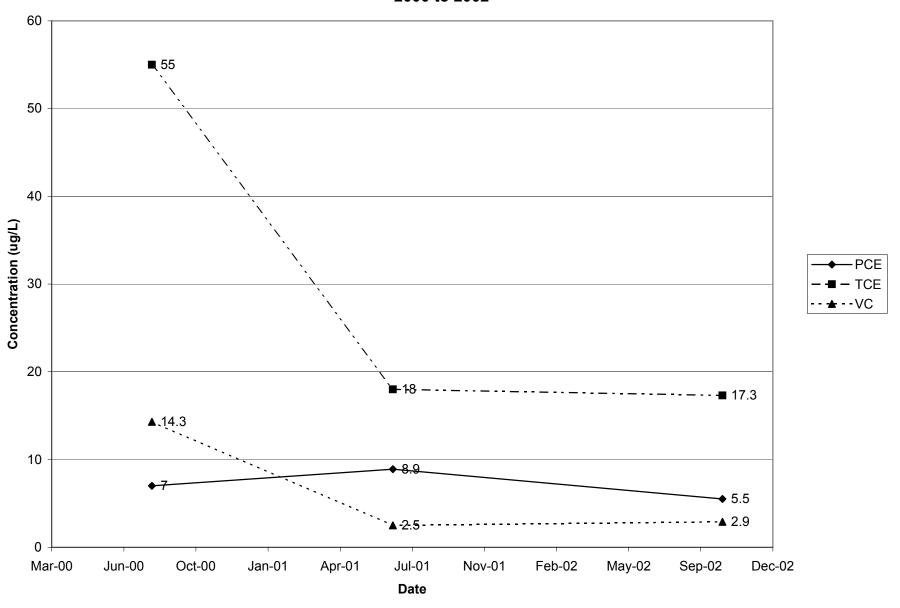


Figure 18
MW-103 COC Concentrations
2000 to 2002

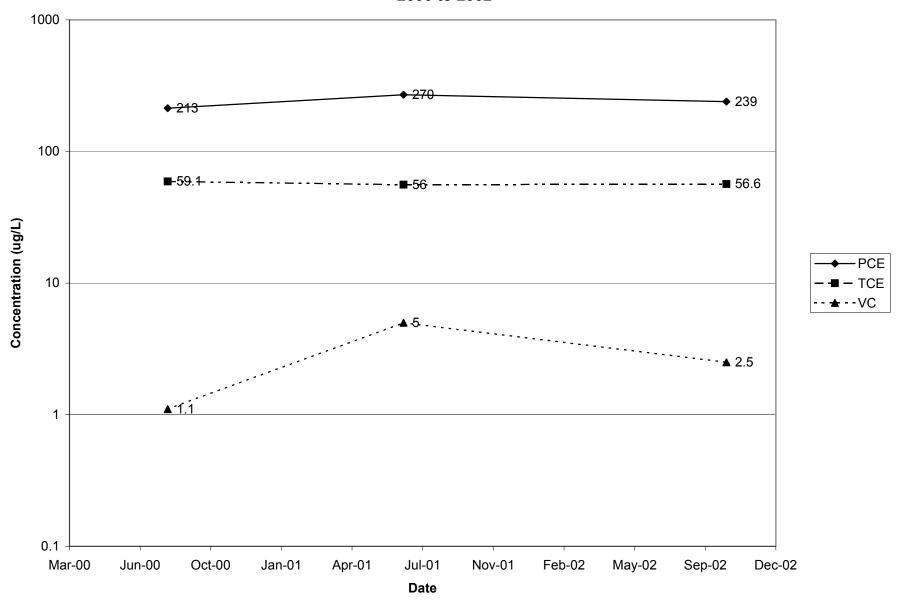


Figure 19
MW-104 COC Concentrations
2000 to 2002

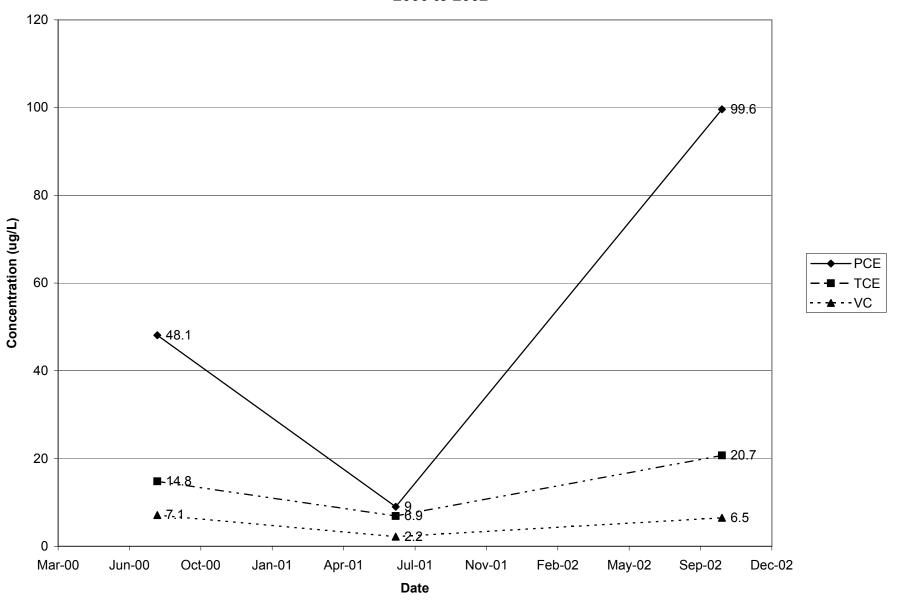


Figure 20 MW-105 COC Concentrations 2000 to 2002

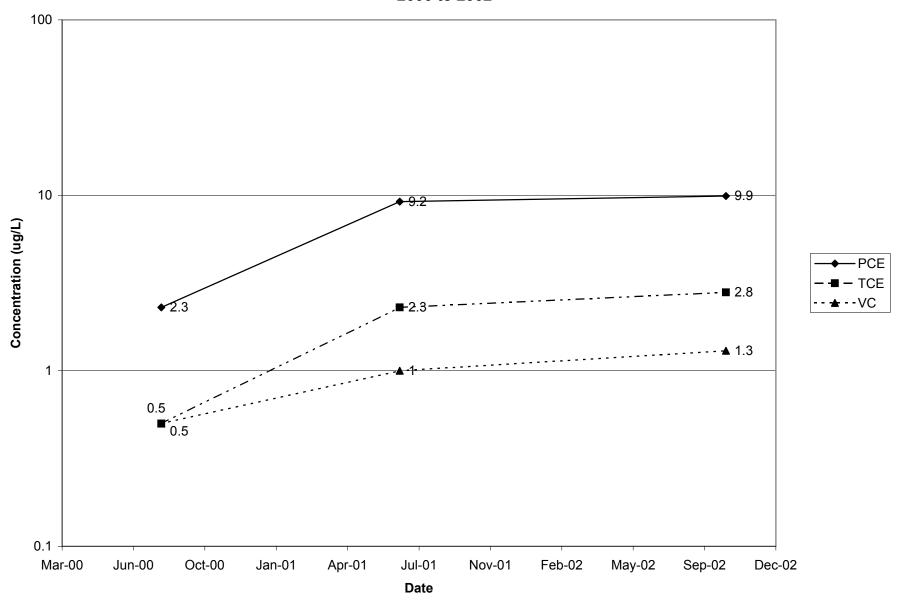


Figure 21 MW-01 COC Concentrations 1997 to 2002

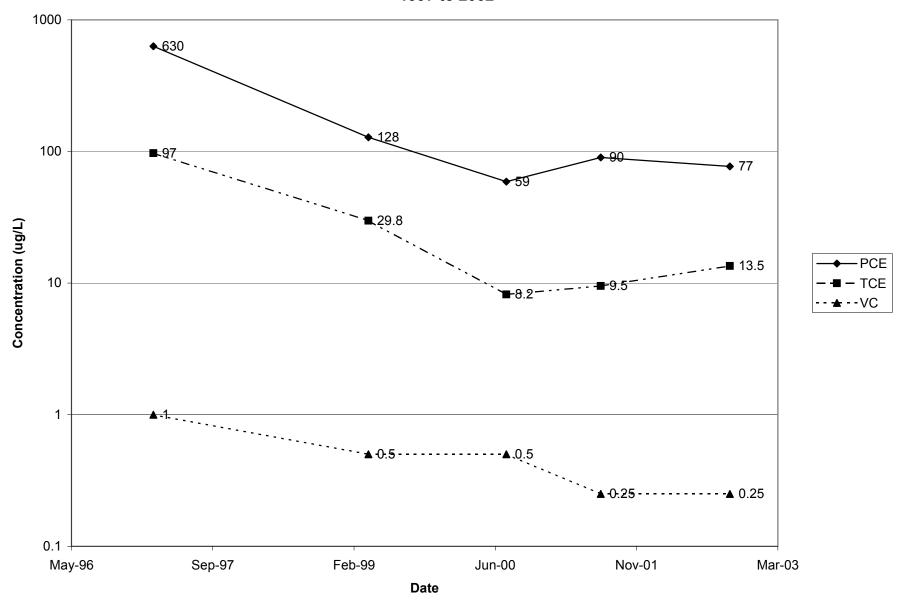


Figure 22 MW-15 COC Concentrations 1997 to 2002

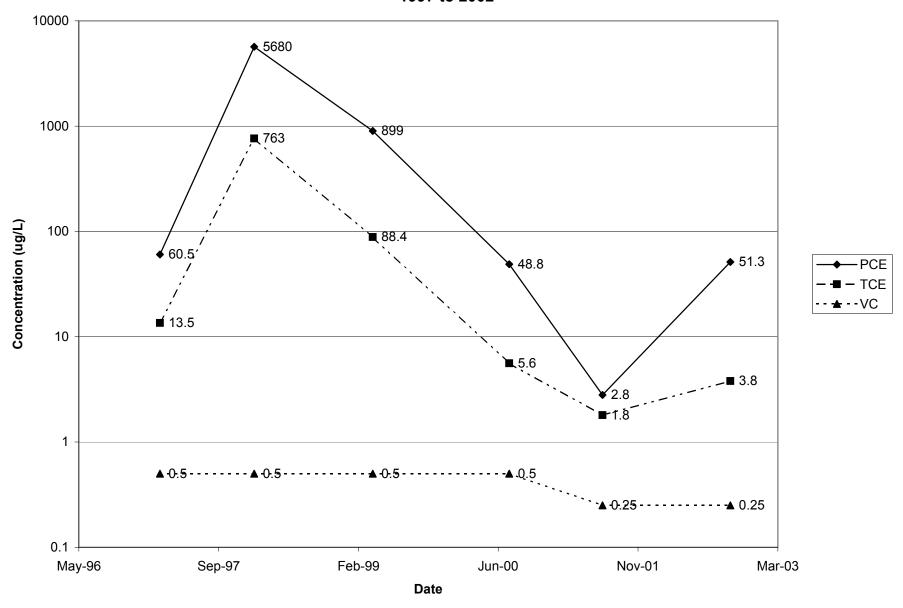


Figure 23
PZ-05 COC Concentrations
1999 to 2002

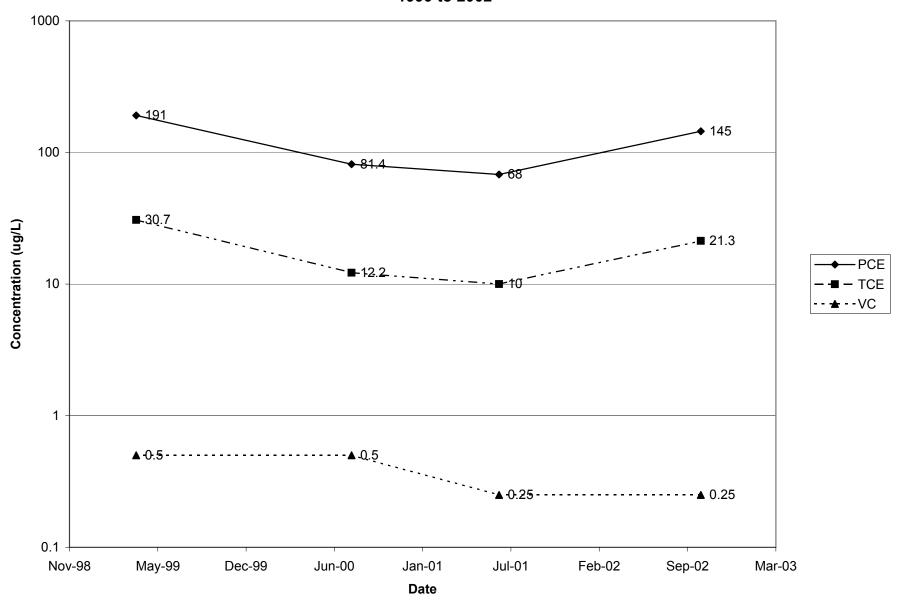
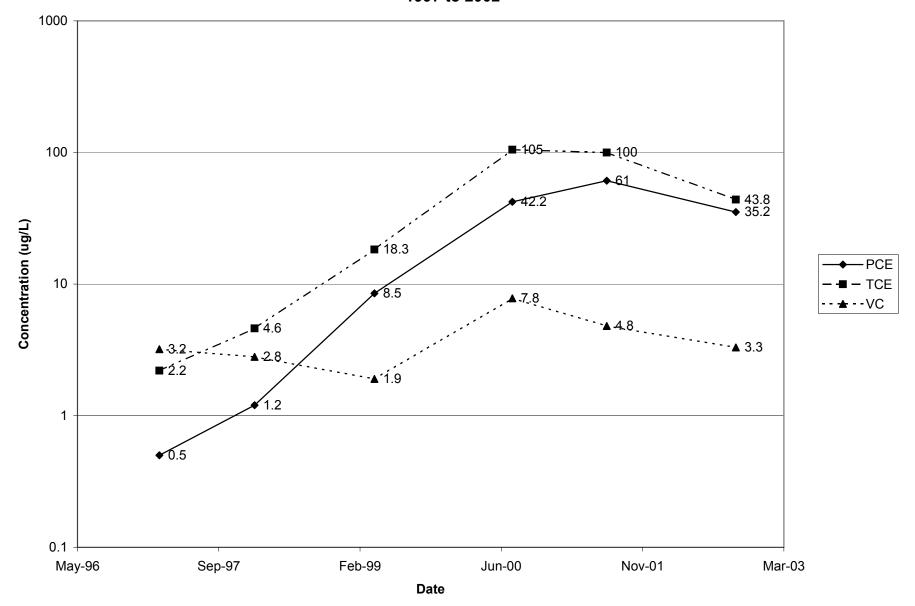
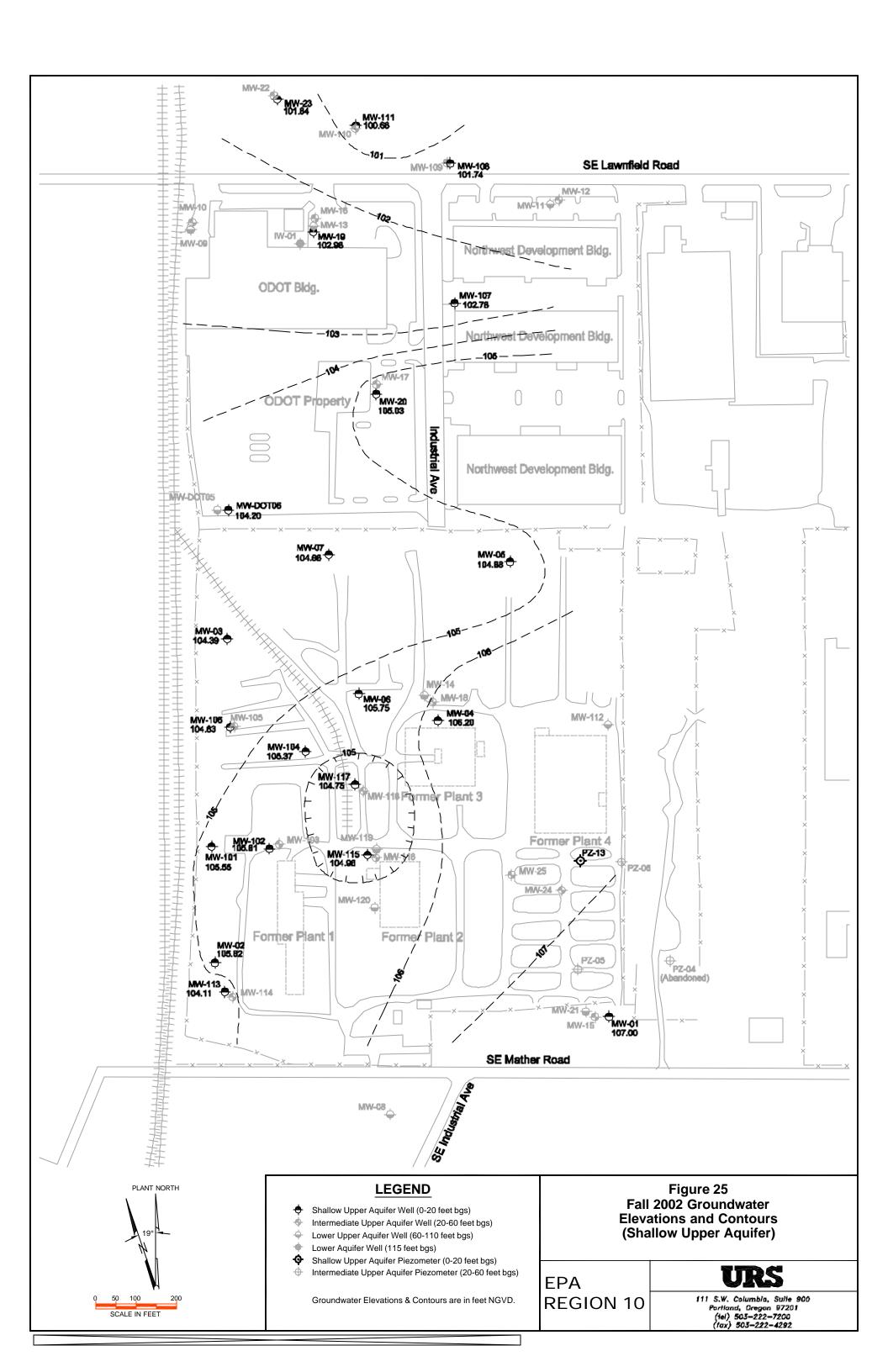




Figure 24 MW-20 COC Concentrations 1997 to 2002

TABLES

TABLE 1
Well Construction Details

Location ID	Location	Total Depth (feet bgs)	Aquifer Level	Top of Screen Depth (feet bgs)	Bottom of Screen Depth (feet bgs)	Screen Length (feet)	Screen Slot Size (inches)	Well Diameter (Inches)	Casing Material
MW-113	Downgradient of Drum Burial Area	20	Shallow Upper	15	20	5	0.020	2	Sch 40 PVC
MW-114	Downgradient of Excavation Area 2	40	Intermediate Upper	35	40	5	0.020	2	Sch 40 PVC
MW-115	Downgradient of Slotted Tank	20	Shallow Upper	15	20	5	0.020	2	Sch 40 PVC
MW-116	Downgradient of Slotted Tank	40	Intermediate Upper	35	40	5	0.020	2	Sch 40 PVC
MW-117	Downgradient of Slotted Tank	20	Shallow Upper	15	20	5	0.020	2	Sch 40 PVC
MW-118	Downgradient of Slotted Tank	40	Intermediate Upper	35	40	5	0.020	2	Sch 40 PVC
MW-119	Downgradient of Slotted Tank	20	Deep Upper	102	112	10	0.020	2	Sch 40 PVC
MW-120	At Slotted Tank	40	Deep Upper	95	105	10	0.020	2	Sch 40 PVC

bgs - Below Ground Surface

TABLE 2
Groundwater Sampling Locations

		Ryznar			Field	Water	No. of	
Station ID	VOCs	Parameters ^a	PDSB	Low-Flow	M easurements ^b	Level		QA/QC
PZ-05	Х			Х	Х	Х	NA	
PZ-06	Х			Х	X	Х	NA	DUP
PZ-13	Х			Х	X	Х	NA	
MW-DOT5	Х		Х			Х	1	
MW-DOT6	Х		Х			Х	1	DUP
MW-01	Χ		Х			Х	1	
MW-02	Х		Х			Х	1	
MW-03	Х		Х			Х	1	
MW-04	Х	Х	Х	Х	Х	Х	1	
MW-05	Х		Х			Х	1	
MW-06	Х		Х			Х	1	MS/MSD
MW-07	Х		Х			Х	1	
MW-08	Х		Х			Х	1	
MW-09	Х		Х			Х	1	
MW-10	Х		Х			Х	1	
MW-11	Х		Х			Х	1	
MW-12	Х		Х			Х	1	
MW-13	Х		Х			Х	1	
MW-14	Х		Х			Х	1	DUP
MW-15	Х	Х	Х	Х	Х	х	1	DUP/MS ^c
MW-16	X	Α	X	^		X	1	20171110
MW-17	X		X			X	1	
MW-18	X		X			X	1	
MW-19	X		X			X	2	
MW-20	X	х	X	Х	X	X	2	
MW-21	X	^	X	^	^	X	2	
MW-22	X		X			X	1	
MW-23	X		X			X	2	
MW-24	X		X			X	1	
MW-25	X		X			X	1	
MW-101	X		X			X	1	
MW-102	X		X			X	1	
MW-103	X	Х	X	Х	X	X	1	
MW-104		^		^	^		1	MS/MSD
MW-105	X		X			X	1	DUP
MW-106	X		X			X	1	DOF
	X		X			X		DUD
MW-107 MW-108	X		X			X	1	DUP
	X		X			X	1	MCMCD
MW-109	X		X			X	1	MS/MSD
MW-110	X		X			X		
MW-111	X		X			X	1	
MW-113	X		X			X	1	
MW-114	X		X			X	1	
MW-115	Х		Х			Х	1	
MW-116	Х		Х			Х	1	
MW-117	Х		Х			Х	1	
MW-118	Х		Х			Х	1	
MW-119	Х		Х			Х	2	
MW-120	Χ		Х			Х	2	

TABLE 2 Groundwater Sampling Locations

Notes:

DUP - field duplicate
MS/MSD - matrix spike/matrix spike duplicate
MW - monitoring well
PDSB - passive diffusion sampling bag
PZ - piezometer

VOC - volatile organic compound

^aRyznar parameters include calcium, total alkalinity, and total dissolved solids.

^bField Measurements include oxidation-reduction potential, pH, dissolved oxygen, temperature, and conductivity.

^cDuplicate was collected for calcium, total alkalinity, and total dissolved solids. MS was collected for calcium only.

TABLE 3 **IDW Analytical Data for Volatile Organic Compounds**

	Tank P4208	Tank P4388	Bin R2121RT	Bin R2164ML
		EPA ID 02414279		
Compound	uç		ug	
Dichlorodifluoromethane	0.5U	0.5U	2.5U	2.7U
Chloromethane	1.0U	1.0U	2.5U	2.7U
Vinyl Chloride	0.25	0.5U	2.5U	2.7U
Bromomethane	2.0U	2.0U	2.5U	2.7U
Chloroethane	0.5U	0.5U	2.5U	2.7U
Trichlorofluoromethane	0.5U	0.5U	2.5U	2.7U
1,1-Dichloroethene	0.5U	0.5U	2.5U	2.7UJ
Freon 113	1.0U	1.0U	2.5U	2.7U
Acetone	1.9	4.0U	8.6J	10.6J
Carbon Disulfide	1.0U	1.0U	2.4J	13.4UJ
Methyl acetate	2.0U	2.0U	2.5U	2.7U
Methylene Chloride	1.0U	1.0U	2.5U	2.7U
trans-1,2-Dichloroethene	0.5U	0.5U	2.5U	2.7UJ
Methyl-t-butyl ether	0.5U	0.5U	2.5U	2.7U
1,1-Dichloroethane	0.5U	0.5U	2.5U	2.7U
cis-1,2-Dichloroethene	9.4	0.49	2.5U	2.7U
2-Butanone	4.0U	4.0U	24.8U	2.7J
Bromochloromethane	0.5U	0.5U	2.5U	2.7U
Chloroform	0.5U	0.5U	2.5U	2.7U
1,1,1-Trichloroethane	0.5U	0.5U	2.5U	2.7U
Cyclohexane	0.5U	0.5U	2.5U	2.7U
Carbon Tetrachloride	1.0U	1.0U	2.5U	2.7U
Benzene	0.5U	0.5U	2.5U	2.7UJ
1,2-Dichloroethane	0.5U	0.5U	2.5U	2.7U
Trichloroethene	3.1	0.63	2.5U	2.7U
Methyl cyclohexane	0.5U	0.5U	2.5U	2.7U
1,2-Dichloropropane	0.5U	0.5U	2.5U	2.7U
Bromodichloromethane	0.5U	0.5U	2.5U	2.7U
cis-1,3-Dichloropropene	0.53U	0.53U	2.6U	2.8U
4-Methyl-2-pentanone	1.0U	1.0U	12.4U	13.4U
Toluene	0.5U	0.5U	2.5U	2.7U
trans-1,3-Dichloropropene	0.47U	0.47U	2.3U	2.5U
1,1,2-Trichloroethane	0.5U	0.5U	2.5U	2.7U
Tetrachloroethene	3.1	1.9	2.5U	0.32J
2-Hexanone	1.0U	1.0U	5.0U	5.4U
Dibromochloromethane	0.5U	0.5U	2.5U	2.7U
1,2-Dibromoethane	0.5U	0.5U	2.5U	2.7U
Chlorobenzene	0.5U	0.5U	2.5U	2.7U
Ethylbenzene	2.0U	0.95	0.44J	0.58J
m- + p-Xylene	1.0U	2.2	1.4J	1.6J
o-Xylene	0.5U	2.5	0.39J	0.47J
Styrene	0.5U	0.5U	2.5U	2.7U
Bromoform	0.5U	0.5U	2.5U	2.7U
Isopropylbenzene	5.0U	5.0U	2.5U	2.7U
1,1,2,2-Tetrachloroethane	0.5U	0.5U	2.5U	2.7U
1,3-Dichlorobenzene	0.5U	0.5U	2.5U	2.7U
1,4-Dichlorobenzene	0.5U	0.5U	2.5U	2.7U
1,2-Dichlorobenzene	0.5U	0.5U	2.5U	2.7U
1,2-Dibromo-3-chloropropane	1.0U	1.0U	12.4U	13.4U
1,2,4-Trichlorobenzene	2.0U	2.0U	2.5U	2.7U
1,2,3-Trichlorobenzene	0.5U	0.5U	2.5U	2.7U

Samples analyzed by Method OLC03.2 and OLM04.2.

Bold font indicates a detection.

U-The analyte was not detected at or above the reported value.

J-The identification of the analyte is acceptable; the reported value is an estimate.

TABLE 4
IDW Analytical Data for Polynuclear Aromatic Hydrocarbons

	Tank P4208	Tank P4388	Bin R2121RT	Bin R2164ML		
	EPA ID 02414278	EPA ID 02414279	EPA ID 02414276	EPA ID 02414277		
Compound	uç	g/l	ug/kg			
Naphthalene	0.37U	0.39U	161U	145U		
Naphthalene, 2-methyl-	0.37U	0.39U	51.9J	145U		
Napththalene, 1-methyl-	0.37U	9.8	45J	145U		
2-Chloronaphthalene	0.37U	0.39U	161U	145U		
Acenaphthylene	0.37U	19.6	161U	145U		
Acenaphthene	0.37U	593	868	368		
Dibenzofuran	0.37U	57.6	523	74.6J		
9H-Fluorene	0.37U	132	528	192		
Phenanthrene	0.37U	0.31J	1740	504		
Anthracene	0.37U	14.4U	140J	89.4J		
Fluoranthene	0.37U	24.2	1020	1490		
Pyrene	0.37U	11.8	737	987		
Retene	0.37U	0.39U	161U	145U		
Benzo(a)anthracene	0.37U	0.46U	161U	152U		
Chrysene	0.37U	0.31J	79.9J	135J		
Benzo[b]fluoranthene	0.37U	0.39U	161U	145U		
Benzl[k]fluoranthene	0.37U	0.39U	161U	145U		
Benzo(a)pyrene	0.37U	0.39U	161U	145U		
Indeno(1,2,3-cd)pyrene	0.37U	0.39U	161U	145U		
Dibenzo[a,h]anthracene	0.37U	0.39U	161U	145U		
Benzo(g,h,i)perylene	0.37U	0.39U	161U	145U		

Samples analyzed by SW-846 8270C.

Bold font indicates a detection.

U-The analyte was not detected at or above the reported value.

J-The identification of the analyte is acceptable; the reported value is an estimate.

TABLE 5
IDW Analytical Data for Polyclorinated Biphenyls

	Tank P4208	Tank P4388	Bin R2121RT	Bin R2164ML			
	EPA ID 02414278	EPA ID 02414279	EPA ID 02414276	EPA ID 02414277			
Compound	uç	g/l	ug/kg				
PCB-1221	0.98 U	1 U	41 U	37 U			
PCB-1232	0.49 U	0.5 U	20 U	18 U			
PCB-1016	0.49 U	0.5 U	20 U	18 U			
PCB-1242	0.49 U	0.5 U	20 U	18 U			
PCB-1248	0.49 U	0.5 U	20 U	18 U			
PCB-1254	0.49 U	0.5 U	20 U	14 J			
PCB-1260	0.49 U	0.5 U	20 U	18 U			
PCB-1262	0.49 U	0.5 U	20 U	18 U			
PCB-1268	0.49 U	0.5 U	20 U	18 U			

Samples analyzed by SW-846 8082.

Bold font indicates a detection.

U-The analyte was not detected at or above the reported value.

J-The identification of the analyte is acceptable; the reported value is an estimate.

TABLE 6
2002 Groundwater Analytical Data
Chemicals of Concern and Associated Breakdown Products (μg/l)

	Sample	Sample			cis-1,2-	Vinyl	1,1-	trans-1,2-	1,1-	1,1,1-
Station ID ¹	Number	Date	PCE	TCE	DCE	Chloride	DCE	DCE	DCA	TCA
PZ-05 P	02414256	10/9/2002	145 J	21.3	16.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PZ-06 P	02414257	10/9/2002	2.5	2.6	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PZ-06 P D	02414258	10/9/2002	2.3	2.7	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PZ-13 P	02414259	10/9/2002	0.28 J	1.1	9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-01	02414200	10/8/2002	77	13.5	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-02	02414201	10/8/2002	0.5 U	2.9	41.5	105 JK	0.72	0.58	0.5 U	0.5 U
MW-03	02414203	10/8/2002	0.5 U	2.6	3.3	0.84 JK	0.5 U	0.5 U	0.5 U	0.5 U
MW-04	02414204	10/10/2002	0.5 U	59.9	1490	47.1	1.9	18.3	0.5 U	0.5 U
MW-04 P	02414205	10/11/2002	32.2	163	979	33.4	1.1	4	0.5 U	0.5 U
MW-05	02414206	10/8/2002	0.5 U	0.5 U	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	02414207	10/9/2002	0.5 U	0.93	53.8	12.1 JK	0.5 U	0.26 J	0.5 U	0.5 U
MW-07	02414208	10/8/2002	0.81	4.2	35.9	4.3 JK	0.5 U	0.5 U	0.5 U	0.5 U
MW-08	02414209	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-09	02414210	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-10	02414211	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-11	02414224	10/11/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-12	02414233	10/11/2002	0.5 U	1.5	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-13	02414234	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-14	02414235	10/9/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-14 D	02414236	10/9/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	02414237	10/9/2002	51.3	3.8	2.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-15 P	02414238	10/11/2002	16.4	3.3	1.9	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-16	02414239	10/10/2002	30.9	31.8	63	1 U	1.4	1.7	1.7	0.5 U
MW-17	02414240	10/11/2002	0.79	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-18	02414241	10/8/2002	0.5 U	84.4 J	1550 J	201 JK	11.6	16	0.5 U	0.5 U
MW-19 U	02414242	10/10/2002	32.5	37.4	65.4	1 U	1.5	1.5	1.9	0.5 U
MW-19 L	02414243	10/10/2002	32.4	38	77	1 U	1.6	1.4	2	0.5 U
MW-20 U	02414244	10/10/2002	33.6	41.7	98.2	3	0.5 U	1 U	0.5 U	0.5 U
MW-20 L	02414245	10/10/2002	35.2	43.8	103	3.3	0.5 U	1 U	0.5 U	0.5 U
MW-20 P	02414260	10/11/2002	31.2	42.7	99.6	3.7	0.5 U	1 U	0.5 U	0.5 U
MW-21 U	02414246	10/8/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-21 L	02414247	10/8/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-22	02424248	10/14/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-23 U	02424249	10/14/2002	0.5 U	0.5 U	0.37 J	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-23 L	02424250	10/14/2002	0.5 U	0.5 U	0.42 J	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-24	02414251	10/8/2002	2.4	0.96	0.34 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-25	02414252	10/8/2002	9.8	2.6	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-DOT5	02414253	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-DOT6			0.5 U	3.1	2.4	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-DOT6 D	02414255	10/10/2002	0.5 U	4.1	2.3	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-101	02424212		17.2	7.3	7.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-102	02424213		5.5	17.3	21.4	2.9 JK	0.51	0.5 U	0.5 U	0.5 U
MW-103			237	53.1	44.5	2.2	0.51	0.5 U	0.5 U	0.5 U
MW-103 P	02414215	10/11/2002	239	56.6	46.9	2.5	0.51	0.5 U	0.5 U	0.5 U
MW-104	02414216	10/9/2002	99.6	20.7	23.5	6.5 JK	0.75	2.5 U	0.5 U	0.5 U
MW-105	02414217	10/9/2002	9.9	2.8	2.6	1.3 JK	0.5 U	0.5 U	0.5 U	0.5 U
MW-105 D	02414218		9.5	2.6	2.6	1.3 JK	0.5 U	0.5 U	0.5 U	0.5 U
MW-106	02414219		1.8	1.6	2.4	0.93 JK	0.5 U	0.5 U	0.5 U	0.5 U
MW-107		10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-107 D	02414221	10/10/2002	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U

TABLE 6
2002 Groundwater Analytical Data
Chemicals of Concern and Associated Breakdown Products (μg/l)

Station ID ¹	Sample Number	Sample Date	PCE	TCE	cis-1,2- DCE	Vinyl Chloride	1,1- DCE	trans-1,2- DCE	1,1- DCA	1,1,1- TCA
MW-108	02424222	10/14/2002	0.26 J	0.62	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-109	02424223	10/14/2002	0.2 J	0.73	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-110	02424225	10/14/2002	0.39 J	0.41 J	0.56	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-111	02424226	10/14/2002	1	1	1	1 U	0.5 U	1 U	0.5 U	0.5 U
MW-113	02414227	10/9/2002	19	34.5	201 J	0.28	0.5 U	0.5 U	0.5 U	0.5 U
MW-114	02414228	10/9/2002	15.8	18.5	10.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-115	02414229	10/9/2002	2	3.4	110 J	23.9 JK	0.31 J	0.66	0.5 U	0.5 U
MW-116	02414230	10/9/2002	2.1	8.8	32.8	6.2 JK	0.34 J	0.24 J	0.5 U	0.5 U
MW-117	02414231	10/9/2002	1.1	1.8	97.3 J	30.3 JK	0.37 J	0.48 J	0.5 U	0.5 U
MW-118	02414232	10/9/2002	16.5	129 J	149 J	11.3 JK	1.5	1.2	0.5 U	0.5 U
MW-119 U	02444003	10/31/2002	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
MW-119 L	02444004	10/31/2002	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
MW-120 U	02444005	10/31/2002	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
MW-120 L	02444006	10/31/2002	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U

Note:

JK-The reported value is an estimate an may be biased high.

Shaded rows are locations where both PDSB and low-flow sampling methods were used.

⁽¹⁾ Letters after Station ID indicate the following: D = duplicate sample; P = sample collected via low-flow sampling method; U = PDSB placed at the upper part of the well screen; L = PDSB placed at the lower part of the well screen; sample collection at all other Station IDs without letter modifiers collected using a single PDSB at the midpoint of the well screen.

U-The analyte was not detected at or above the reported value.

J-The reported value is an estimate.

TABLE 7 1997 to 2002 Groundwater COC Analytical Data

				1														1						
Sample	Total	Aquifer	Screen		PCF ¹ un	/I (Remedi	ation Goal:	· 1 0 ua/l)				TCF ² ug/	/I (Remedi:	ation Goal:	1 6 ug/l)			Vir	vl Chloride	ua/I (Rei	mediation G	Soal: 1 0 u	n/I)	
Location	Depth	Level	Interval	Mar-97	Feb-98	Apr-99		Jul-01 ⁴	Oct-02	PCE Trend	Mar-97	Feb-98		Aug-00		Oct-02	TCE Trend	Mar-97	Feb-98	, μg/L (Rei Apr-99		Jul-01	Oct-02	VC ³ Trend
Plume 1	Бери	Level	ilitervai	IVIAI-31	1 en-30	Api-33	Aug-00	oui-oi	OC1-02	FOE TIETIU	IVIAI-31	rep-30	Api-99	Aug-00	Jui-01	OC1-02	TCE Trella	IVIAI -31	1 en-30	Api-33	Aug-00	Jul-01	OC1-02	VO IICIIA
DOT-05	101	Deep	95 - 100	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		1 U	1 U	0.71	0.5 U	ND/NE	1 U		1 U	1 U	0.5 U	1 U	ND
DOT-06	20	Shallow	14 - 19	1 U		1 U	0.08 J	0.5 U	0.5 U	ND/NE	8		6.7	4.6	0.7 U	4.1	Decreasing to ND	0.7 J		1 U	1 U	0.5 U	1 U	ND ND
MW-04	13.1	Shallow	8 - 12	11,000		5,510	1890 J	2,500	32.2	Decreasing	320		226	833 J	1,100	163	Decreasing	100 J		121	291 J	300	47.1	Variable
MW-05	13.2	Shallow	8 - 13	1 U		1 U	1 U	0.5 U	0.5 U	ND ⁵	1 U		1 U	1 U	0.5 U	0.5 U	ND	1		1 U	1 U	0.5 U	0.5 U	ND
										Decreasing to							_	·			. 0			
MW-06	13	Shallow	8 - 12	13		1 U	0.81 J	0.5 U	0.5 U	ND	28		13.1	0.28 J	0.62	0.93	Decreasing to NE ⁶	35		65.1	41.4	3.2	12.1	Variable
	40.0	01 "	0 - 40 -	0.4			00.0	4011	0.04					47.0	0.1	4.0				40.0		4.1		
MW-07	13.6	Shallow	8.5 - 12.5	21		41.4	38.2	10U	0.81	Decreasing to NE	48		54.9	47.6	2J	4.2	Decreasing	28		18.3	11.1	4J	2.4	Decreasing
MW-09	86	Deep	80 - 85	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		0.32 J	0.31 J	0.5 U	0.5 U	ND/NE	1 U		1 U	1 U	0.5 U	1 U	ND
MW-10	35	Intermediate	29 - 34	1 U		1 U	0.15 J	0.5 U	0.5 U	ND/NE	10	-	7.2	0.19 J	0.5 U	0.5 U	Decreasing to ND	1 U		1 U	1 U	0.5 U	1 U	ND
MW-11	66.5	Deep	60.5 - 65.5	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		0.56 J	0.95 J	1.5	0.5 U	ND/NE	1 U		1 U	1 U	0.5 U	1 U	ND
MW-12	39	Intermediate	33 - 38	1 U		0.13 J	1 U	0.5 U	0.5 U	ND/NE	1 U		0.48 J	0.44 J	1.1	1.5	ND/NE	1 U		1 U	1 U	0.5 U	1 U	ND
MW-13	88	Deep	83 - 87	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		1 U	1 U	0.5 U	1 U	ND
MW-14	89.7	Deep	85 - 90	0.66 J		1 U	1 U	0.5 U	0.5 U	ND	1 U		1 U	1 U	0.5 U	0.5 U	ND	1 U		1 U	1 U	0.5 U	0.5 U	ND
MW-16	50	Intermediate	44 - 48	9.1	5.4	3	1 U	44	30.9	Increasing	4.9	3.7	2.2	1	32	31.8	Increasing	0.88 J	1 U	1 U	1 U	0.5 U	1 U	ND
MW-18	51.5	Intermediate	45 - 50	38.5	54.5	49.6	14.4	0.5 U	0.5 U	ND	132	38.4	216	12.7	34 E	84.4	Increasing	5.8	715	122	22.9	200 D	201	Steady
MW-19	15	Shallow	5 - 15	12.4	6.3	4	35.6	51	32.5	Decreasing?	7.4	3.8	3	32.7	43	38	Steady	0.73 J	1 U	1 U	1.5	0.5 U	1 U	ND
MW-22	33.5	Intermediate	28 - 33	2 U		1 U	0.17 J	0.5 U	0.5 U	NE/ND	2 U		1 U	0.20 J	0.5 U	0.5 U	NE/ND	2 U		1 U	1 U	0.5 U	1 U	ND
MW-23	14	Shallow	4 - 14	2 U		1 U	1 U	0.5 U	0.5 U	ND	2 U		1 U	0.41 J	0.5 U	0.5 U	NE/ND	2 U		1 U	1 U	0.5 U	1 U	ND
MW-107	20	Shallow	14 - 19				1 U	0.5 U	0.5 U	ND NE (ND				1 U	0.5 U	0.5 U	ND NE/ND				1 U	0.5 U	1 U	ND
MW-108	20	Shallow	15 - 20				1 U	0.5 U	0.26	NE/ND				1 U	0.56	0.62	NE/ND				1 U	0.5 U	1 U	ND
MW-109 MW-110	40 40	Intermediate Intermediate	35 - 40 35 - 10				1 U 1 U	0.5 U 0.5 U	0.2 0.39	NE/ND NE/ND			-	1 U 1 U	0.82 0.5 U	0.73 0.41	NE/ND NE/ND				1 U 1 U	0.5 U 0.5 U	1 U 1 U	ND ND
MW-111	20	Shallow	15 - 20				1 U	1.7	1	At RG				1 U	1.7	1	NE/ND				1 U	0.5 UJ	1 U	ND
Plume 2	20	Strailow	15 - 20	-			10	1.7	ı	ALKG		-		10	1.7		INC				10	0.5 05	10	ND
MW-02	15.8	Shallow	11 - 15	5		1.6	1 1	9	0.5 U	ND	13		3.1	5	18	2.9	Decreasing	19		20.6	53.9	30 D	105	Increasing
MW-03	16.2	Shallow	11.5 - 15.5	0.7 J		0.38 J	0.33 J	0.65	0.5 U	NE/ND	3		4.2	4.8	3	2.6	Steady	0.7 J		0.81 J	0.9 J	0.5 U	0.84	NE/ND
MW-101	20	Shallow	11.5 - 15.5				1.7	24 D	17.2	Decreasing?				1.3	10	7.3	Decreasing?				1 U	0.5 UJ	0.5 U	ND ND
MW-102	20	Shallow	15 - 20				7	8.9	5.5	Steady				55	18	17.3	Steady				14.3	2.5	1	At RG
MW-103	40	Intermediate	35 - 40				213	270 D	239	Steady				59.1	56 D	56.6	Steady				1.1	5 DJ	2.5	Variable
MW-104	20	Shallow	15 - 20		_		48.1	9	99.6	Increasing				14.8	6.9	20.7	Increasing				7.1	2.2	6.5	Variable
MW-105	40	Intermediate	35 - 40				2.3	9.2	9.9	Steady				1 U	2.3	2.8	Steady				1 U	1	1.3	At RG
MW-106	20	Shallow	15 - 20				1.1	0.73	1.8	At RG		-		1.3	1.9	1.6	At RG				1 U	1.1	0.92	At RG
MW-113	20	Shallow	15 - 20						19							34.5							0.28	
MW-114	40	Intermediate	35 - 40						15.8							18.5		-		-			0.5 U	
Plume 3																								
MW-01	18	Shallow	13 - 17	630 D		128	59	90 D	77	Variable	97 D		29.8	8.2	9.5	13.5	Variable	1		1 U	1 U	0.5 U	0.5 U	ND
MW-15	50	Intermediate	45 - 50	60.5	5680	899	48.8	2.8	51.3	Increasing	13.5	763	88.4	5.6	1.8	3.8	Increasing	1	1U	1 U	1 U	0.5 U	0.5 U	ND
MW-21	100.5	Deep	93 - 103	2 U		1 U	1 U	0.99	0.5 U	ND/NE	2 U		1 U	1 U	0.5 U	0.5 U	ND	2 U		1 U	1 U	0.5 U	0.5 U	ND
MW-24	50	Intermediate	45 - 50		1.3	2.3	0.58 J	1.4	2.4	Slight Increase		1 U	0.45 J	0.29 J	0.53	0.96	NE		1 U	1 U	1 U	0.5 U	0.5 U	ND
MW-25	50	Intermediate	45 - 50		0.55 J	1.9	0.82 J	5.4	9.8	Slight Increase		0.36	1.1	0.53 J	1.6	2.6	At RG		1 U	1 U	1 U	0.5 U	0.5 U	ND
PZ-05	40	Intermediate	35 - 40			191	81.4 J	68 D	145	Increasing			30.7 J	12.2	10	21.3	Increasing			1 U	1 U	0.5 U	0.5 U	ND
PZ-06	40	Intermediate	35 - 40			0.72 J	0.49 J	0.72	2.5	Slight Increase			0.3 J	0.29 J	0.97	2.7	Slight Increase			1 U	1 U	0.5 U	0.5 U	ND
PZ-13	12	Shallow	7 - 12			0.17 J	124 J	49 D	0.28	NE			0.16 J	61.1 J	35 D	1.1	NE			1 U	1 U	0.5 U	0.5 U	ND
Plume 4	E1 E	Intermediat-	4E E0	111	111	411	111	0.0	0.70	NE	111	111	411	411	0	0.511	ND	411	411	111	111	0 5 11	4.11	ND
10100 17		Intermediate	45 - 50 4.5 - 14.5		1 U	1 U	1 U	8.8	0.79	NE Decreasing	1 U	1 U	1 U	1 U	9	0.5 U	ND Dogradaing	1 U	1 U	1 U	1 U	0.5 U	1 U	ND Variable
MW-20 mer Plant 2	14.5	Shallow	4.0 - 14.0	0.5 J	1.2	8.5	42.2	61	35.2	Decreasing	2.2	4.6	18.3	105	100	43.8	Decreasing	3.2	2.8	1.9	7.8	4.8	3.7	Variable
MW-115	Area 20	Shallow	15 - 20	_	1 .				2	ı				_ 1		3.4							23.9	
MW-116	40	Intermediate	35 - 40						2.1							8.8				<u></u>			6.2	
MW-117	20	Shallow	15 - 20						1.1							1.8							30.3	
MW-117	40	Intermediate	35 - 40						16.5							1.0 129 J							11.3	
MW-119	112	Deep	102 - 112						10.0							1200							11.0	
			95 - 105						 							 							 	
MW-120	105	Deep	95 - 1115																					

o:53-f4009300.00 NWPC GW RD\GW Tech Memo\2002 data trend.xls Table 7 3/3/2003

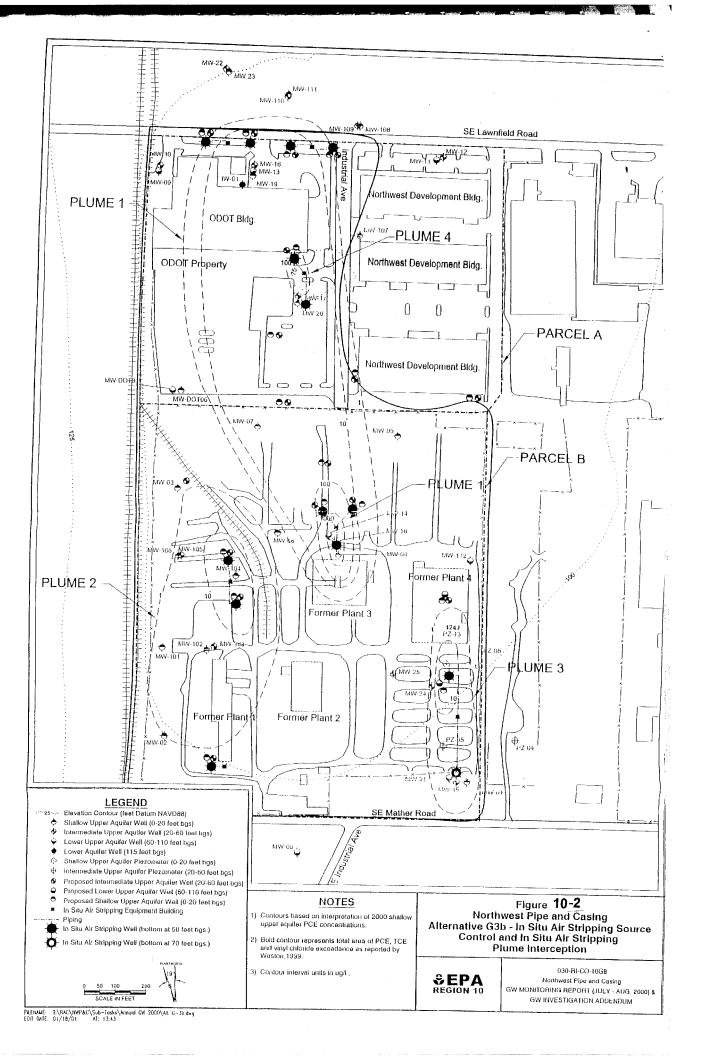
Note:
(1) PCE - Tetrachloroethene.

⁽²⁾ TCE - Trichloroethene.

⁽³⁾ VC - Vinyl Chloride.

⁽⁴⁾ PDB - Passive Diffusion Bag. During 2001 groundwater sampling event, PDBs results were, on average 174% higher than low-flow sampling results.

⁽⁵⁾ ND - Non-Detect.
(6) NE - Non Exceedance of Remediation Goal.
(7) RG - Remediation Goal.
Shaded values exceed the Remediation Goal.


TABLE 8
Ryznar Index Parameter Results

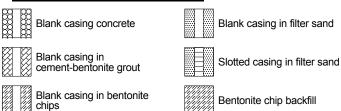
Station ID	Sample Number	Sample Date	Alkalinity as CaCO ₃ (mg/L)	Total Dissolved Solids (mg/L)	Total Calcium (mg/L)	рН	S	С	Ryznar Value
MW-4	02414205	10/11/2002	99	173	30.9	6.4	23.04	7.2	9.48
MW-15	02414238	10/11/2002	104	170	23.8	6.4	23.05	7.1	9.51
MW-15 Dup	02414261	10/11/2002	104	172	24.3	6.4	23.04	6.9	9.70
MW-20	02414260	10/11/2002	150	247	43.6	6.4	23.08	7.7	9.94
MW-103	02414215	10/11/2002	122	186	25.2	7.6	23.05	7.0	8.49

TABLE 9
Fall 2002 Groundwater Elevation Data

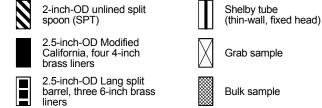
	T . 4 - 1		Deside to	T		I
Station ID	Total Depth (feet	Measure	Depth to Water	Top of Casing Elev.	Groundwater	Aquifer
	bgs)	Point	(feet)	(feet)	Elev. (feet)	7 194
PZ-05	40	TOC	8.85	115.76	106.91	Intermediate Upper
PZ-06	40	TOC	9.14	115.85	106.71	Intermediate Upper
PZ-13	12	TOC	8.47	115.39	106.92	Shallow Upper
MW-01	18.0	TOC	8.52	115.52	107.00	Shallow Upper
MW-02	15.8	TOC	8.69	114.51	105.82	Shallow Upper
MW-03	16.2	TOC	8.14	112.53	104.39	Shallow Upper
MW-04	13.1	TOC	8.44	114.64	106.20	Shallow Upper
MW-05	13.2	TOC	9.13	114.01	104.88	Shallow Upper
MW-06	13.0	TOC	7.74	113.49	105.75	Shallow Upper
MW-07	13.6	TOC	7.37	112.03	104.66	Shallow Upper
MW-08	72.0	TOC	9.24	115.75	106.51	Deep Upper
MW-09	86.0	TOC	3.58	106.04	102.46	Deep Upper
MW-10	35.0	TOC	2.95	106.02	103.07	Intermediate Upper
MW-11	66.5	TOC	4.76	107.40	102.64	Deep Upper
MW-12	39.0	TOC	4.70	107.40	102.78	
MW-13	88.0	TOC	2.94	107.67	102.76	Intermediate Upper Deep Upper
MW-14	89.7	TOC		115.35	102.77	
			9.63	116.59		Deep Upper
MW-15	50.0	TOC	9.60		106.99	Intermediate Upper
MW-16	50.0	TOC	2.69	105.60	102.91	Intermediate Upper
MW-17	51.5	TOC	4.02	107.50	103.48	Intermediate Upper
MW-18	51.5	TOC	9.40	115.34	105.94	Intermediate Upper
MW-19	15.0	TOC	2.79	105.77	102.98	Shallow Upper
MW-20	14.5	TOC	2.25	107.28	105.03	Shallow Upper
MW-21	100.5	TOC	9.16	116.03	106.87	Deep Upper
MW-22	33.5	TOC	6.82	108.56	101.74	Intermediate Upper
MW-23	14.0	TOC	6.44	108.28	101.84	Shallow Upper
MW-24	50.0	TOC	8.29	115.05	106.76	Intermediate Upper
MW-25	50.0	TOC	8.92	115.64	106.72	Intermediate Upper
MW-DOT5	101.0	TOC	7.08	111.10	104.02	Deep Upper
MW-DOT6	20.0	TOC	7.10	111.30	104.20	Shallow Upper
MW-101	15-20	TOC	8.59	114.14	105.55	Shallow Upper
MW-102	15-20	TOC	8.05	113.86	105.81	Shallow Upper
MW-103	40-50	TOC	7.99	113.95	105.96	Intermediate Upper
MW-104	15-20	TOC	8.56	113.93	105.37	Shallow Upper
MW-105	40-50	TOC	7.62	112.61	104.99	Intermediate Upper
MW-106	15-20	TOC	7.96	112.79	104.83	Shallow Upper
MW-107	15-20	TOC	5.49	108.27	102.78	Shallow Upper
MW-108	15-20	TOC	5.95	107.69	101.74	Shallow Upper
MW-109	40-50	TOC	5.98	108.02	102.04	Intermediate Upper
MW-110	40-50	TOC	5.84	107.31	101.47	Intermediate Upper
MW-111	15-20	TOC	6.54	107.20	100.66	Shallow Upper
MW-112	115-120	TOC	7.17	113.47	106.30	Lower Aquifer
MW-113	19	TOC	8.46	112.57	104.11	Shallow Upper
MW-114	40	TOC	8.74	112.78	104.04	Intermediate Upper
MW-115	20	TOC	8.78	113.74	104.96	Shallow Upper
MW-116	39	TOC	9.30	113.77	104.47	Intermediate Upper
MW-117	20	TOC	8.04	112.79	104.75	Shallow Upper
MW-118	40	TOC	8.62	112.76	104.14	Intermediate Upper
MW-119	112	TOC	8.72	113.88	105.16	Deep Upper
MW-120	105	TOC	9.05	113.30	104.25	Deep Upper

APPENDIX B Boring Logs

Project Location: Clackamas, Oregon


Project Number: 33754161

Key to Log of Boring / Well


Sheet 1 of 1

Elevation feet Depth, feet Location Sample Label Cabel Cabel Graphic Log	MATERIAL DES	CRIPTION	WELL SCHEMATIC AND CONSTRUCTION DETAILS	FIELD NOTES						
1 2 3 4 5 6	7		8	9						
COLUMN DESCRIPTIONS 1 Elevation: Elevation in feet referenced to mean sea level (MSL) or site datum. 2 Depth: Depth in feet below the ground surface. 3 Sample Location: Type of soil sample collected at approximate depth interval shown; sampler symbols are explained below. 4 Sample Label: Sample identification number. 5 Drill Progress: Time, in 24-hour clock, recorded at events during downhole advance such as sample collection, drill rod addition, down time, and daily start and finish. 6 Graphic Log: Graphic depiction of subsurface material encountered; may include color, moisture, grain size, and density/consistency. 7 Material Description: Description of material encountered; may include color, moisture, grain size, and density/consistency. 8 Well Schematic and Details: Schematic of well installation; materials are described in the column to the right of the well schematic; graphic symbols are explained below. 9 Field Notes: Comments and observations regarding drilling, drill rig behavior, cuttings, sampling, or well construction and development made by driller or field personnel.										
TYPICAL SOIL GRAPHIC SYMBOI	<u>LS</u>									
Poorly graded SAND (SP)	Well-graded SAND (SW)	SAND with silt (S	SP-SM) SILTY S	SAND (SM)						
CLAY (CL)	SILT (ML)	SANDY SILT (MI	L) CLAYE	Y SILT (ML)						
Poorly graded GRAVEL (GP)	Well-graded GRAVEL (GW)	GRAVEL with sill	t (GP-GM) SILTY (GRAVEL (GM)						

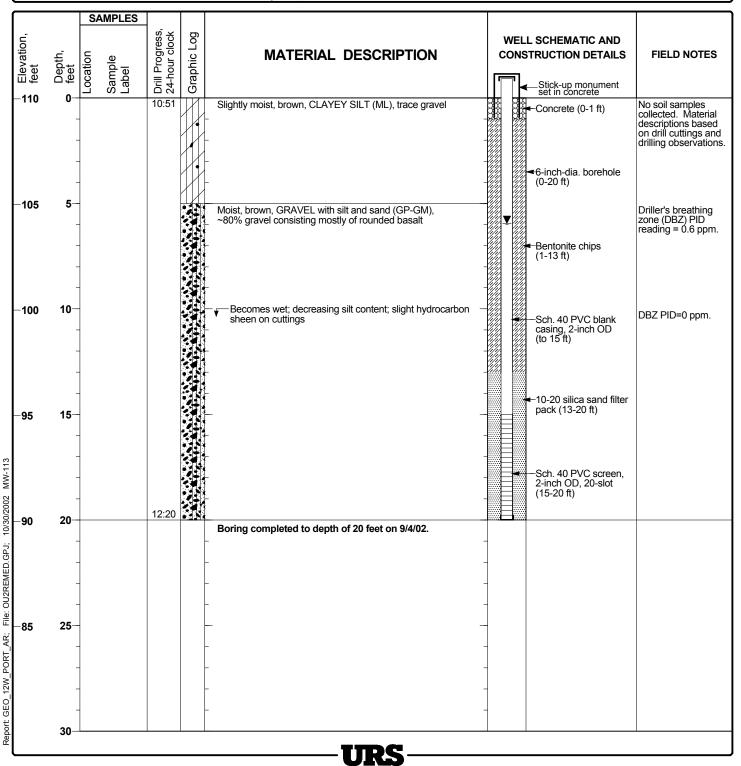
TYPICAL WELL GRAPHIC SYMBOLS

TYPICAL SAMPLER GRAPHIC SYMBOLS

OTHER GRAPHIC SYMBOLS

- $\overline{\underline{\lor}}$ First water encountered at time of drilling (ATD)
- ✓ Water level measured in well on specified date
- Change in material properties within a stratum
- Inferred contact between strata or gradational change in lithology

GENERAL NOTES

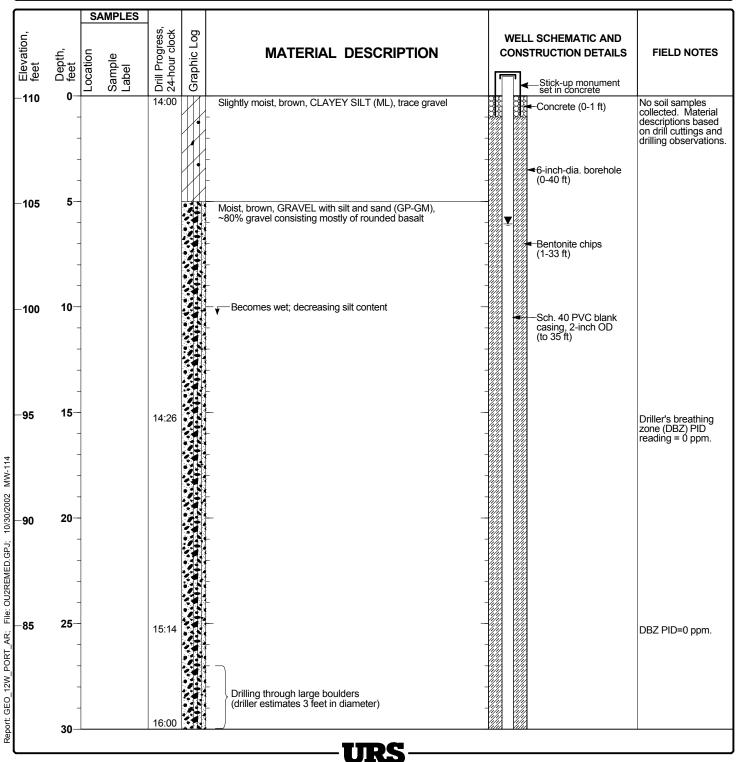

- Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-113

Date(s) Drilled	9/4/02	Logged By	D. Weatherby	Reviewer	D. Weatherby		
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	20.0 feet		
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	112.57 feet MSL		
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	110.05 feet MSL		
Water Level a Date Measure		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 15-20 ft				

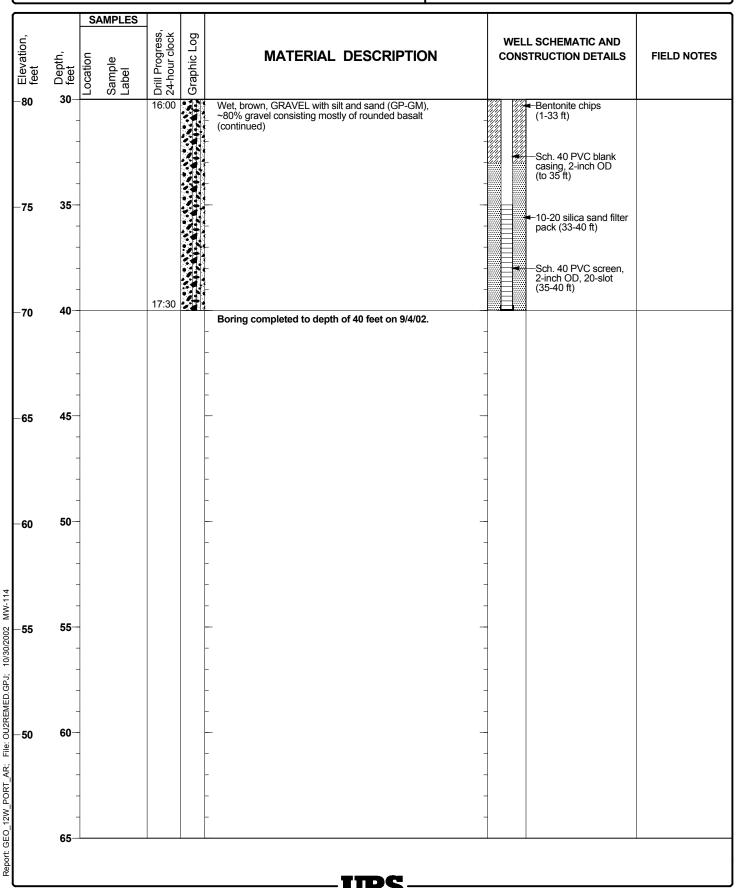


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-114

Date(s) Drilled	9/4/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	40.0 feet
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	112.78 feet MSL
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	110.11 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 35-40 ft		

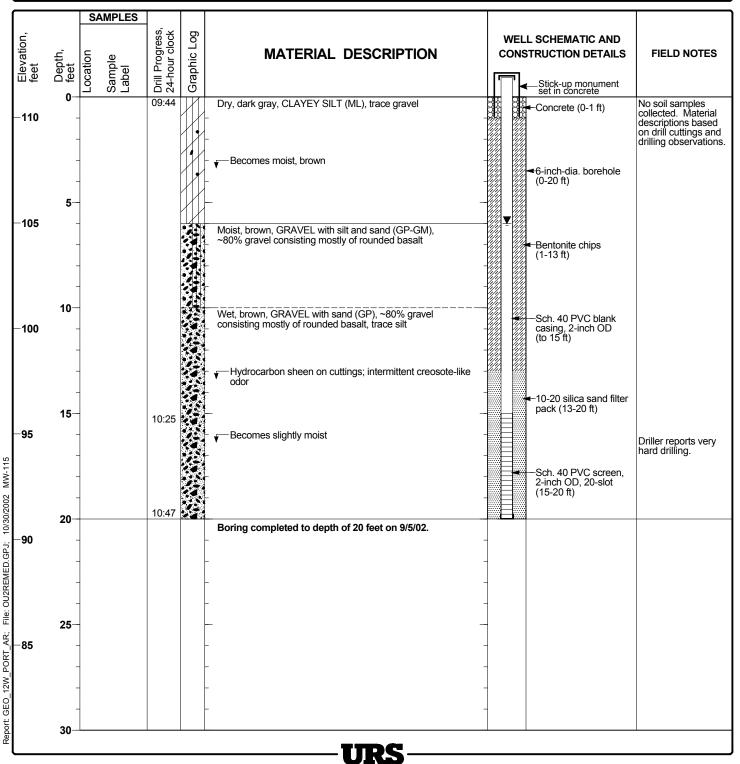


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-114

Sheet 2 of 2

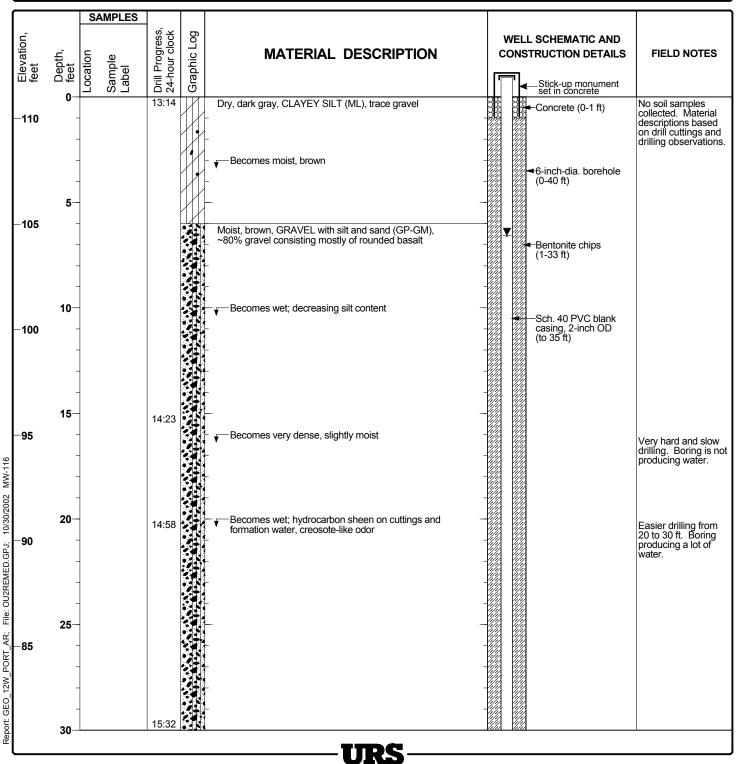


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-115

Date(s) Drilled	9/5/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	20.0 feet
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	113.74 feet MSL
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	110.97 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 15-20 ft		

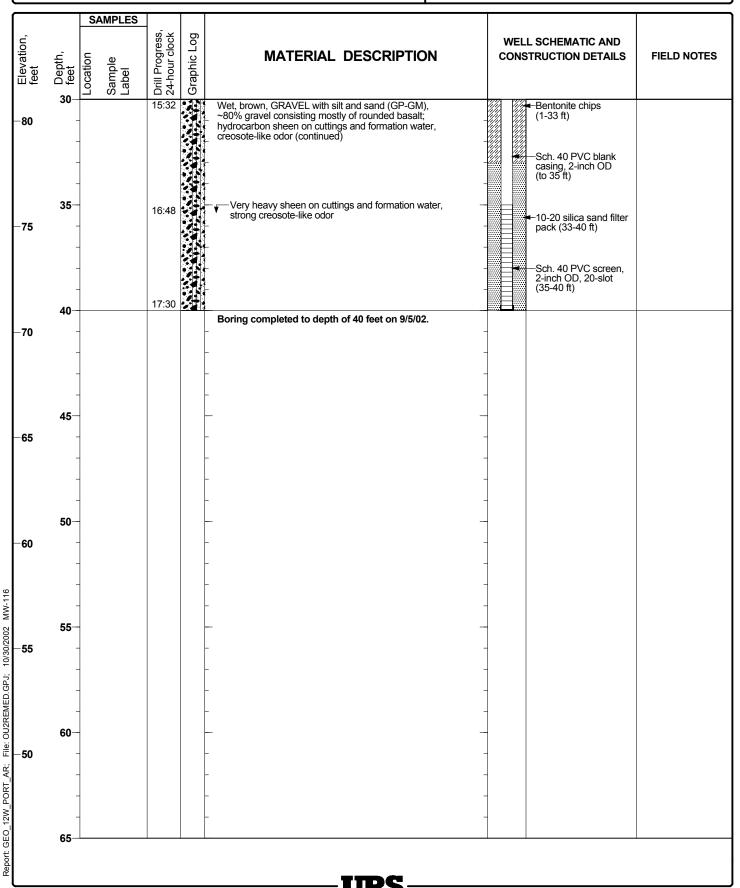


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-116

Date(s) Drilled	9/5/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	40.0 feet
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	113.77 feet MSL
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	111.03 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 35-40 ft		

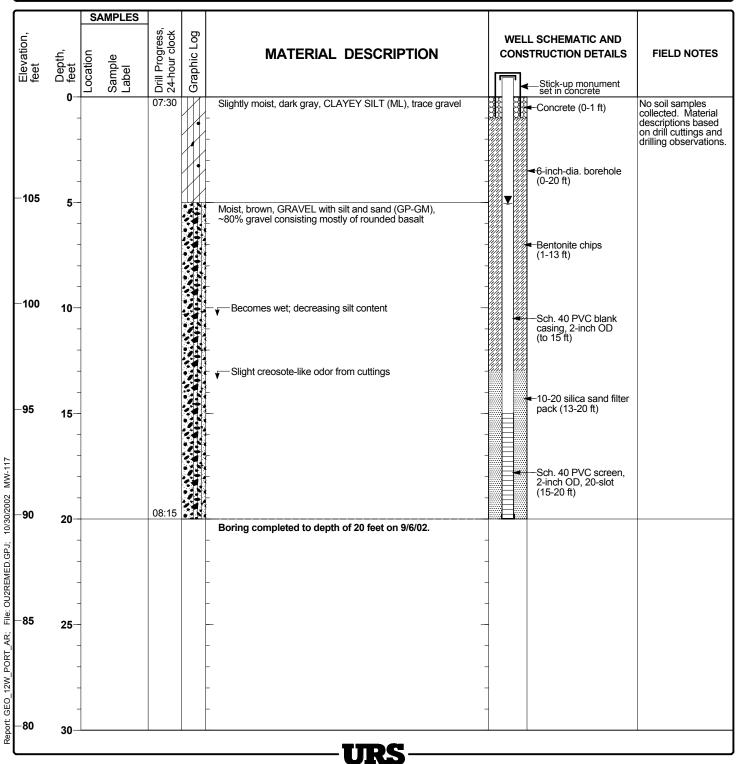


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-116

Sheet 2 of 2

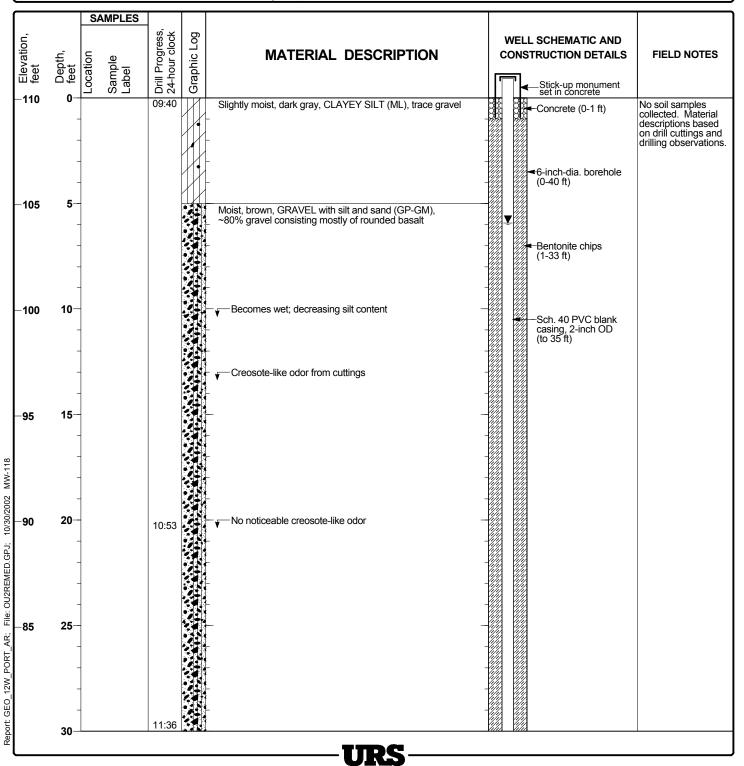


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-117

Date(s) Drilled	9/6/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	20.0 feet
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	112.79 feet MSL
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	109.80 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 15-20 f		

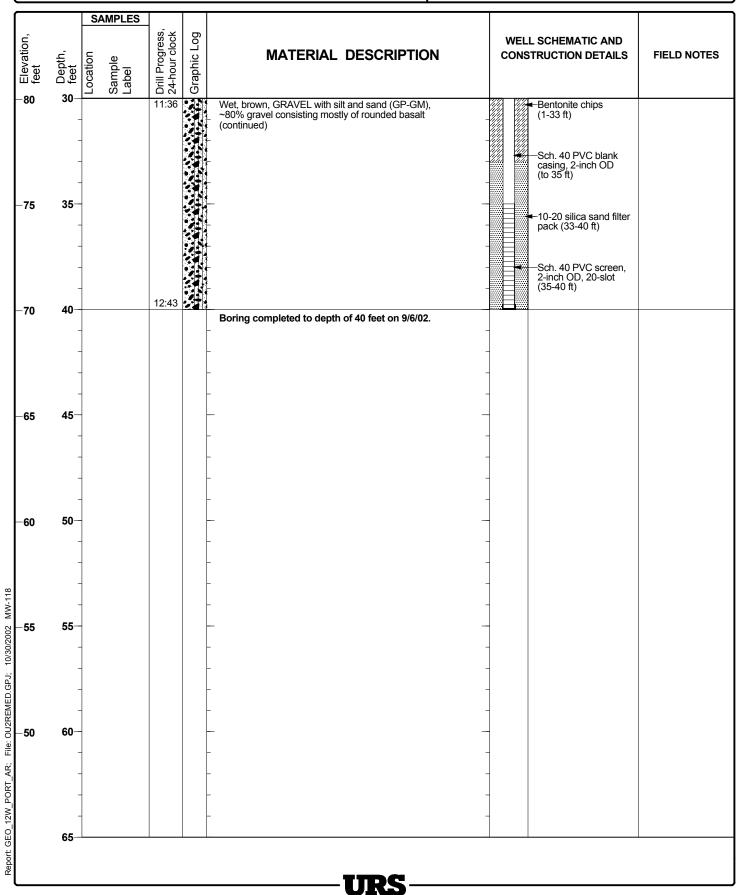


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-118

Date(s) Drilled	9/6/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary	Drilling Contractor	R & R Drilling	Total Depth of Borehole	40.0 feet
Drill Rig Type	B-16 ODEX Rig	Drill Bit Size/Type	6-inch carbide underreemer	Top of Casing Elevation	112.76 feet MSL
Sampling Method	No sampling performed	Hammer Data	SD-5 air hammer	Ground Surface Elevation	110.07 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 35-40 ft		

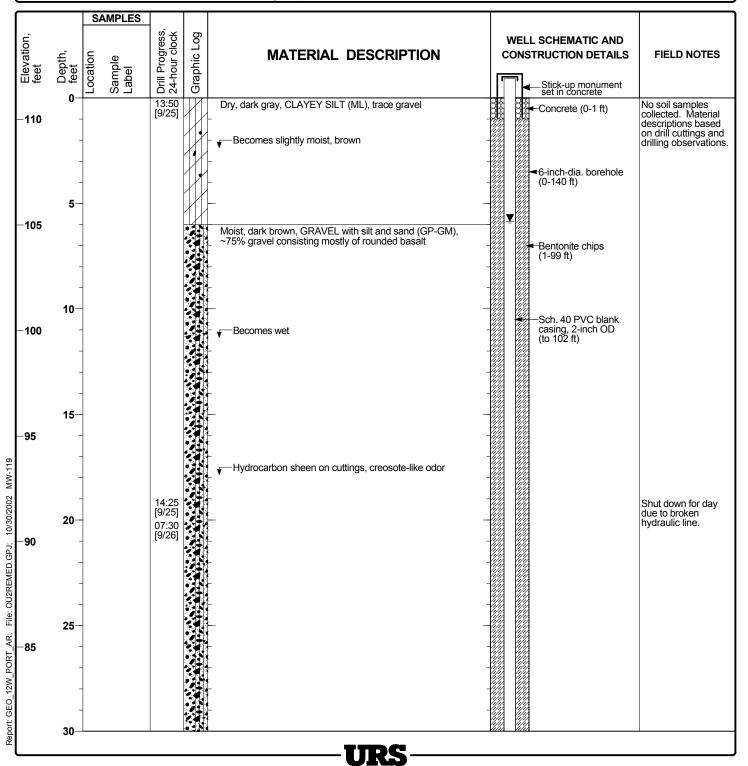


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-118

Sheet 2 of 2

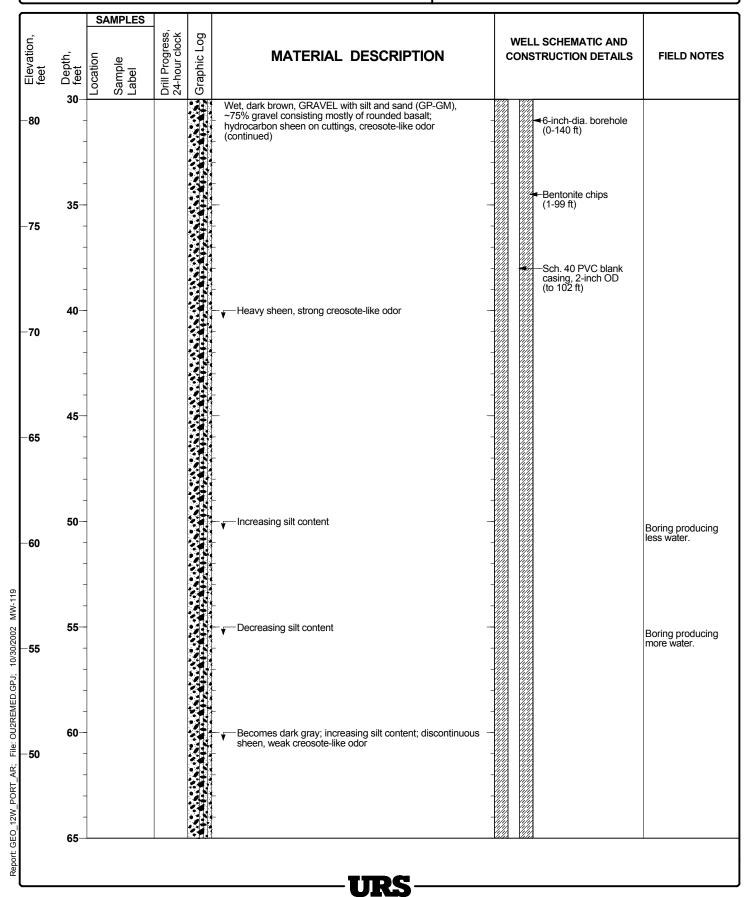


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-119

Date(s) Drilled	9/25/02 and 9/26/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary (dual-wall rotary)	Drilling Contractor	Tacoma Pump & Drilling	Total Depth of Borehole	140.0 feet
Drill Rig Type	Foremost DR-24	Drill Bit Size/Type	5-inch tricone bit (inner); 6-inch casing (outer)	Top of Casing Elevation	113.88 feet MSL
Sampling Method	No sampling performed	Hammer Data	Not applicable	Ground Surface Elevation	111.02 feet MSL
		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 102-112		

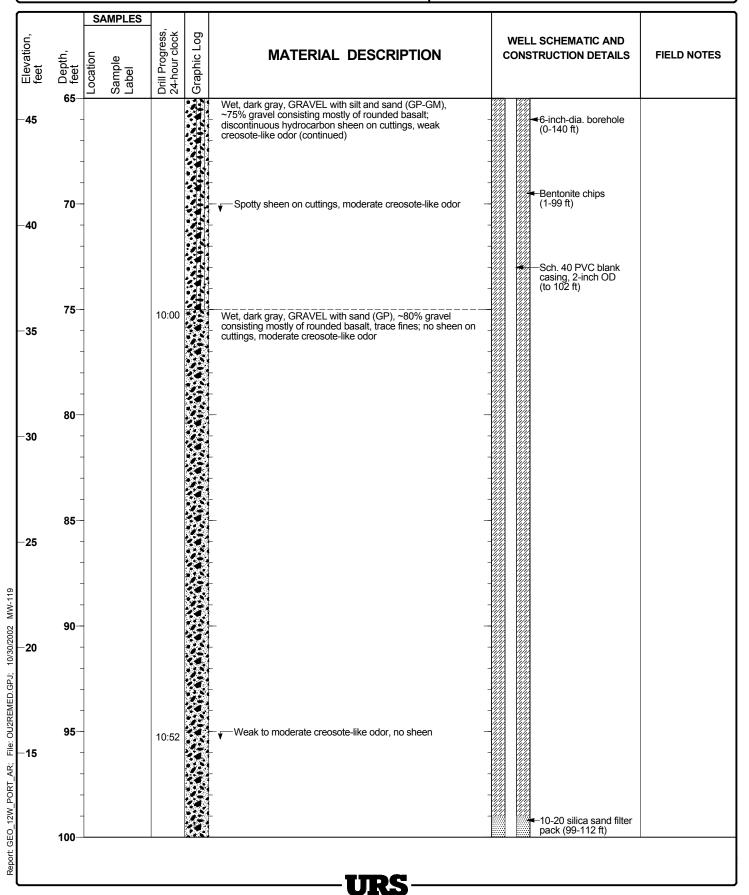


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-119

Sheet 2 of 5

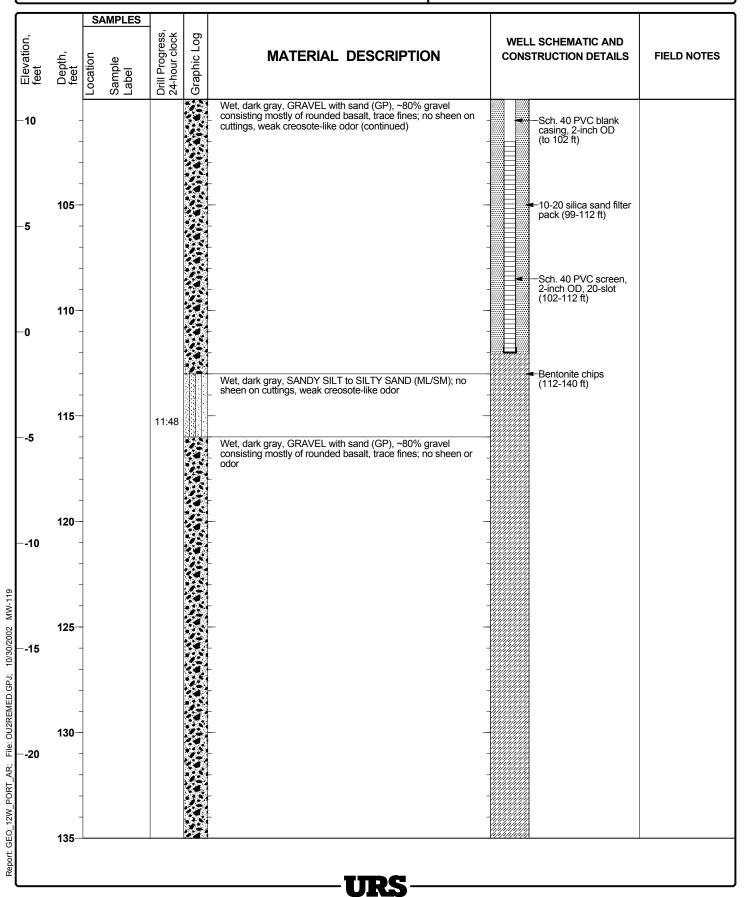


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-119

Sheet 3 of 5

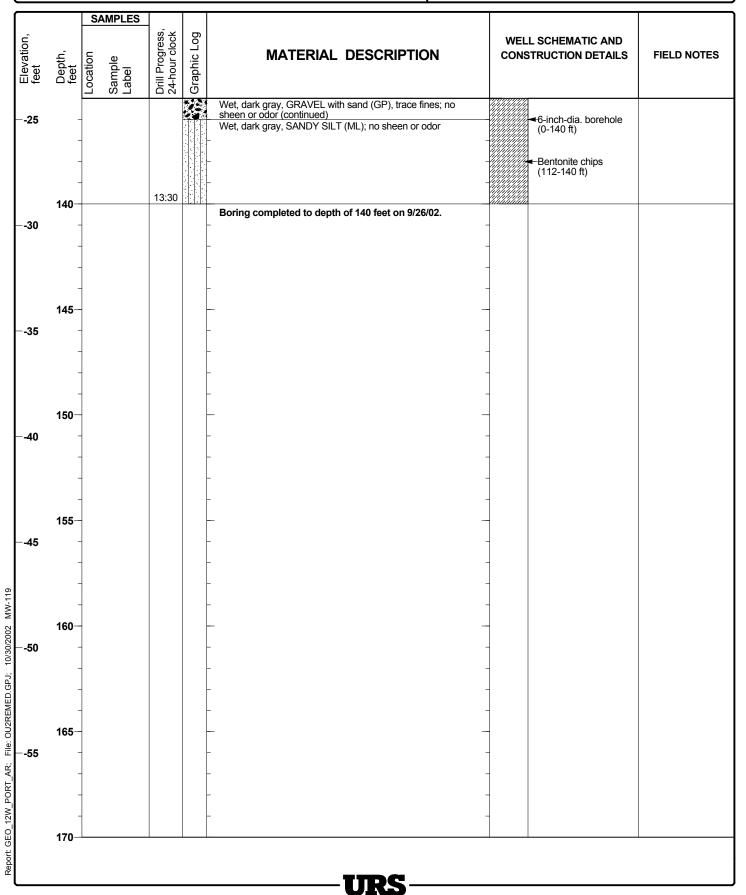


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-119

Sheet 4 of 5

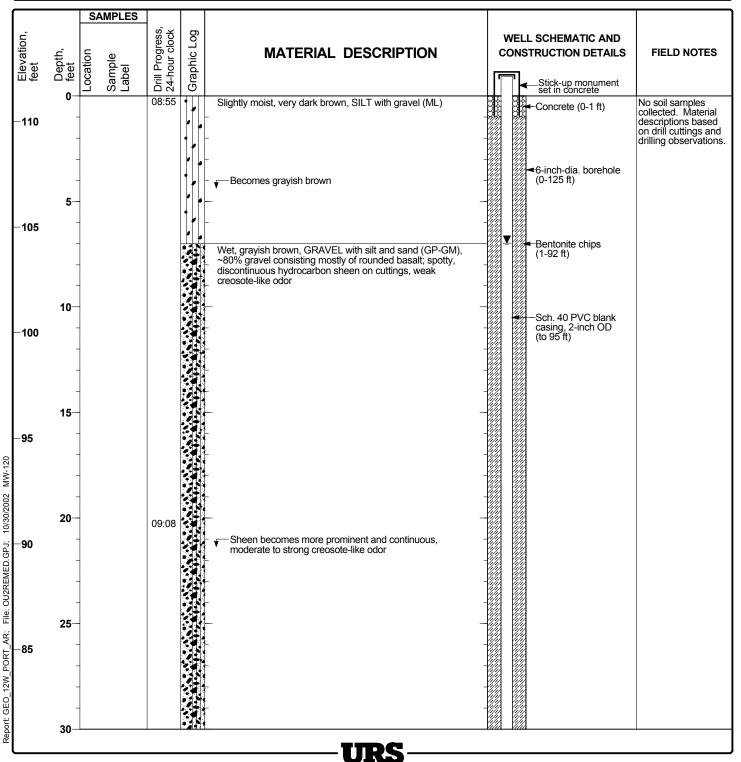


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-119

Sheet 5 of 5

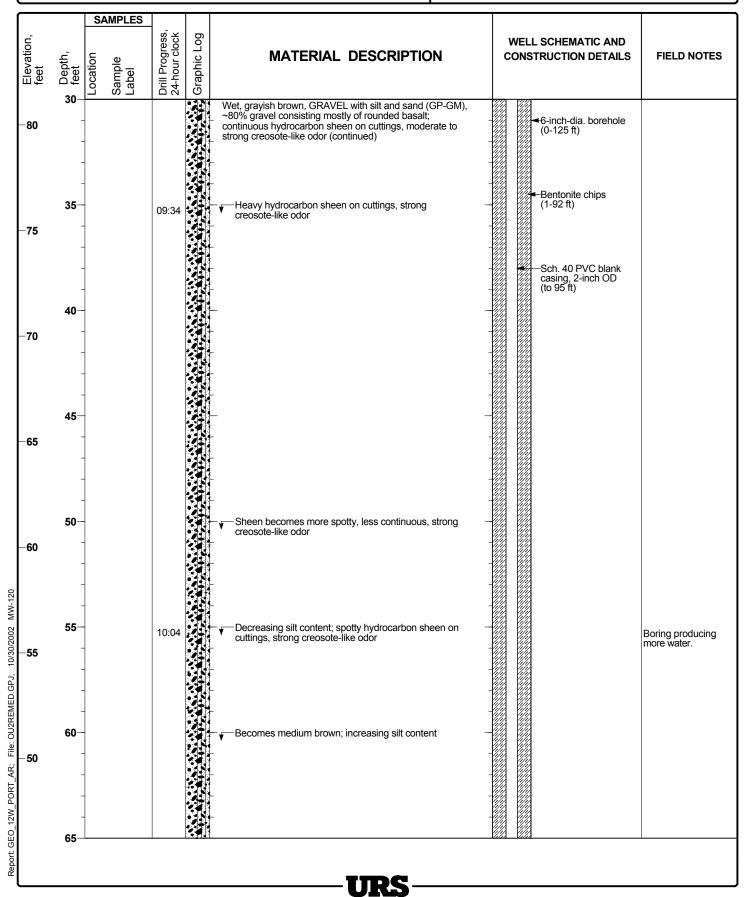


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-120

Date(s) Drilled	10/1/02	Logged By	D. Weatherby	Reviewer	D. Weatherby
Drilling Method	Air Rotary (dual-wall rotary)	Drilling Contractor	Tacoma Pump & Drilling	Total Depth of Borehole	125.0 feet
Drill Rig Type	Foremost DR-24	Drill Bit Size/Type	5-inch tricone bit (inner); 6-inch casing (outer)	Top of Casing Elevation	113.30 feet MSL
Sampling Method	No sampling performed	Hammer Data	Not applicable	Ground Surface Elevation	111.22 feet MSL
Water Level and Date Measured 6.97 feet bgs on 10/17/02		Borehole Completion	Monitoring well installed (see schematic): 2-inOD PVC casing screened 95-105		

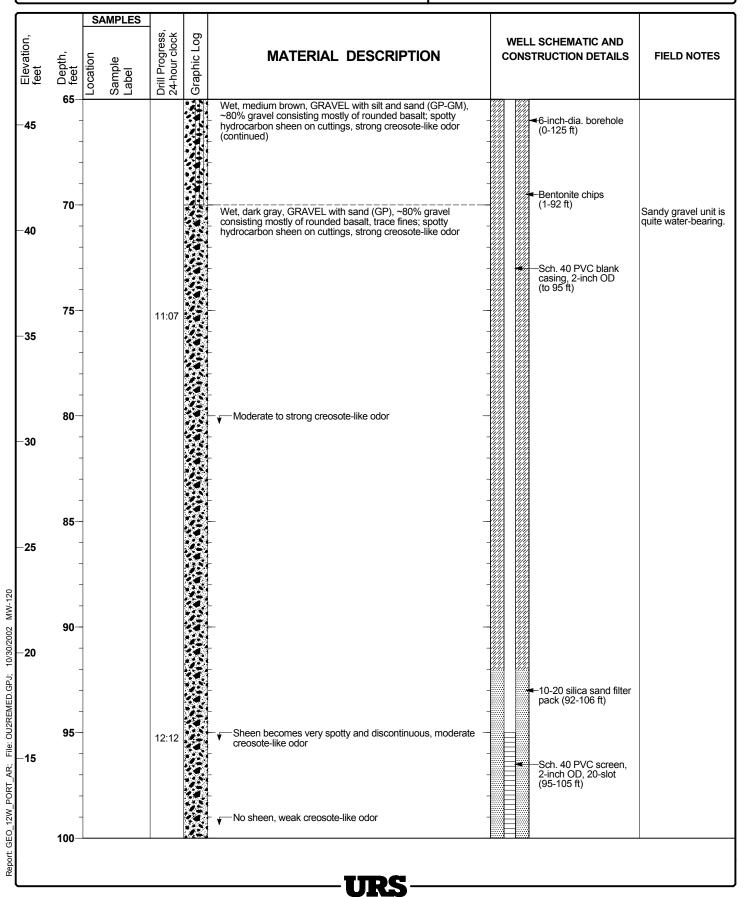


Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-120

Sheet 2 of 4

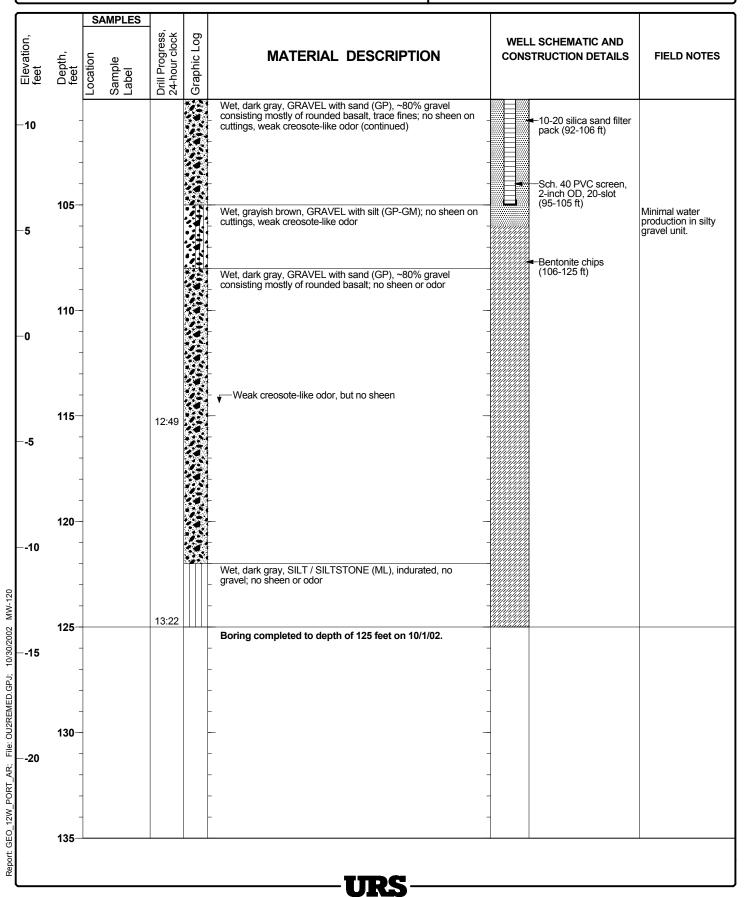

Project: NW Pipe & Casing OU 2 Remedial Design

Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-120

Sheet 3 of 4


Project: NW Pipe & Casing OU 2 Remedial Design

Project Location: Clackamas, Oregon

Project Number: 33754161

Log of Boring / Well MW-120

Sheet 4 of 4

Project No: 3	Project Name: NW PIPE + CASING Project No: 33757/6/ Date: 9/17/0-2 Field Personnel: D. Weatherby			Well Depth: _Z tt. Well Diameter: _Z in. Volume of Water in Well: gal.		Well Development Method: 5 nbmcvsible Pmp Pump Discharge Rate: v Z gpm Method of Disposal of Discharged Water: Rakker Tauk			
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS			
	1610	6	7.83	0.459	14.9	THRB = 999 DO=16Zmg/L			
	1620	20	7.78	0.450	14.8	TURB = 999 DO = 1.38 mg/L			
	16 35	.30	ファフス	0.433	14.7	THRIS = 999 DO = 1.66 mg./L			
	1654	38	7.70	0.444	14.6	TURB = 936 DO = 1.98 mg/L			
	1719	50	7,69,	0. 440	14.6	TURIS = 999 DO = Z. 19 mg/L			
	1729	20	7.70	0,435	14,4	14RB=47Z DO= 1.95 mg/L			
	1758	58.	7.69	0.449	14,3				
	Owelopmen	Complete.	pH. condit	Jup stable,	fut wa	ter continues to be turners.			
	,	,			<u> </u>				
					 				
				<u></u>	<u></u>				
Notes: Ma	s scheen	or hyd	loco. bon 04	POR.					

URS

Project No: 3	Project Name: NW PIPE + CASING Project No: 33754/6/ Date: 9/17/02 Field Personnel: D. Weatherby			Well Depth: 40 ft. Well Diameter: Z in. Volume of Water in Well: gal.		relopment Method: Submers, Lie Pump scharge Rate: ~ Z gpm; of Disposal of Discharged Water: Bakker Tank
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity տ ⁵ /Հու (μS) -	TEMP.	REMARKS
	1606	4	7.89	0.322	14.0	TURB. = 999 DO = 0.35 mg/L
	1616	70	7.78	0.254	13,6	TURB = 999 PO= 1,02
	1626	20	7,76	0.768	13.5	14R13 = 999 DO= 0.95.
	1658	64	7.70	0. 286	13.5	(4R13 = 999 DO = 7.31
	1722	48	7.69 .	0.288	13.3	TURD = 578 DO = 2.14
	1735	26	7.70	0.79/	13.3	TURB= 104 DO = 7.22
	1754	38	7.66	0. 286	13.2	TURIS=867 DO=2.91
	Developme	at Complete	pH, Cond.	+ temp 5%	15/2 40	I water continuing to be turis.
	7				ļ	
Notes: No	scheen or	e hydroca. Ge	as assore.			

Project Name: NWRipe - Cosing Project No: 33754/6/ Date: 9/19/02 Field Personnel: D. Weatherby			Well Depth: Zo ft. Well Diameter: Z in. Volume of Water in Well: gal.		Well Development Method: Submers, We Pump Pump Discharge Rate: ~ Z gpm Method of Disposal of Discharged Water: Bukker land			
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS		
	0843	186	8.05	0.322	16.4	TURIS = 228 DO = 0.58 mg/L.		
	0900	34	8.11	0.360	16.8	TURB = 10 00 = 0.89 mg/L.		
	0914	Z8	8,16	0.358	16.7			
	Development	Complete.	Water clean	+ water go	alike f	avameters stable.		
				/				
Notes:								

URS

Project Name: NW Pipe + Cosing Project No: 33754/6/ Date: 9/19/02 Field Personnel: D. Weatherlay			Well Depth:ft. Well Diameter:in. Volume of Water in Well: gal.		Well Development Method: Submers, ble Rung Pump Discharge Rate: 12 apm Method of Disposal of Discharged Water: 174 kter kunt			
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS		
	0850	100	8.13	0.443	15.0	TURB = 575 DO = 2.58 mg/L		
	0905	32	8.15	0.4/2	15.4	Tures = 474 DO= 0.32 mg/L.		
	0923	34	8.12	0.396	15.8	TURB = 189 DO = 0.52 mg/L		
· · · · · · · · · · · · · · · · · · ·	0939	32	8.15	0,392	16,1	TURIS = 121 DO = 0. 28 mg/L		
	100]	44	8.16:	0.386	16.8	TURB = 38 DO = 0.37 mg/L		
	1018	34	8.11	0.380	16.5	TURB = 95 DO = 0. Z4 mg/L		
	104/	46	8,14	0.377	16.9	TURI3 = 10 DO = 0.23 mg/L		
	Developmen	A Complet	· Water clea	xwa Ev qu	offer D	avameter stoble		
Notes: Well	en was	vokel.	sheen or och	in; as the	water	became c/rus, no addis		

WELL DEVELOPMENT LOG FOR MW-1/7

Project Name: NN Pipe + Casing
Project No: 3375 4/6/
Date: 9/18/07

Well Depth: 20 ft. Well Diameter: _ Z _ in. Well Development Method: Submersible Purp

Volume of Water in Well: ____ gal.

Pump Discharge Rate: 17 gpm

Method of Disposal of Discharged Water: Bakker Tank

Field Personn	el: D. Weath	erby.			<u></u>	
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity ***/ _{Cm} (# S)	TEMP. (°C)	REMARKS
	1138	1 Z O	7.65	0,370	18.5	THEB = 999 DO = 0.30mg/L
	1217	78	7,77	0.354	18.9	TURB = 999 DO= 0.30 mg/L
	1275	14	7. \$5	0. 355	19.1	TURB = 60 DO = 0.37 mg/L
	1237	74	7.80	0.355	19.1	TURB = 84 DO = 0.31 mg/L
	Development	Complete, L	Dater vuming	fairly cke	c. Wate	R fralik pavameters stable.
				·		

Notes: No scheen or hydrocarhon

Odor.

ORIGINA 3

Project Name: NW Pipe + Cabing Project No: 33754/6/ Date: 9/18/02 Field Personnel: D. Weatherby			Well Depth: <u>40</u> ft. Well Diameter: <u>7</u> in. Volume of Water In Well: gal.		Well Development Method: Submersible Pump Pump Discharge Rate: Method of Disposal of Discharged Water: Bakker Tunk			
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS		
	1)47	~ 70	7.73	0, 225	15-Z	TURB = 999 DO = 0.80 mg/L		
	1240	118	7,93	0. 233	15.4	TURB = 401 DO = 1.08 mg/2.		
	1250	20	7,90	0.225	15,1	TURB = 89 DO = 0.77 mg/L.		
	1258	12	7.91			THRB = Z4 DO = 0,87 mg/L.		
	Develomen	& Complete.	Water vann	Fairly Clear.	Vater go	able pavameter stolle.		
:	J	,	U		l l			
Notes: N	scheen or	hydrocarbon	dor					

FORM

Project Name: NW Pipo + Casing			Well Depth: //	Z ft.	Well Development Method: Gubmansille Pump				
Project No: 3	the state of the s		Well Diameter:	<u> </u>	Pump Discharge Rate: ~/ 5pm				
Date: /0/z/	02	;	Volume of Wat		Method	of Disposal of Discharged Water: Bakker Lank			
	el: D. Weath	eitry	in Well:	gal.		· · · · · ·			
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS			
	1141	81	6.1	0.Z87	14.0	TURB = 476 DO = 0.72 mg/L			
	1204	23	6.87	0.212	14.0	TURB = 208 DO = 0.49 mg/L			
	1234	30	7.04	0,207	14.0	TURB= 196 DO = 0.15 mg/L			
	1249	15	7.12	0.205	13.8	THRB = 129 DO = 0.15 mg/L			
	1305	16	7,10	0. 204	13.9	TURB = 62 DO = 0.29 mg/L			
	Develop	ment Co	plete						
			·						

Project No: 3°	oject Name: NW Pipe or Casing oject No: 33754161 ate: 10/2/02 ald Personnel: D. Wratherby			ft. in. al.	Well Development Method: Submevs. 3/c Pump Pump Discharge Rate: ~ / Jpm Method of Disposal of Discharged Water: Rakker Tank				
DEPTH TO WATER	TIME (24-hour)	PURGED (gallons)	pH (units)	Conductivity	TEMP. (°C)	REMARKS			
6.5 MOZ	1711	48	7.53	0.232	14,7	TURI3 = 831	DO= 0.39 mg/L		
16.2 MOC	1430	19	7,37	0,217	14.3	9 TURIS = 87 DO = 0.37 mg			
16.2 "	1450	20	7. z8	0.208	13.9				100 = 0.37 mg/L
16.2 "	1510	20	7. zo	0.20/	13.8				
	Developmes	A Complé	É,						
		,				·			
						·			
					ļ				
					ļ				
	-								

Sixty-three primary samples were collected by URS during the 2002 groundwater sampling at the NW Pipe & Casing/Hall Process Company (NWPC) site in Clackamas, Oregon. The analytical results were subject to a full data quality review by the EPA Region 10 Manchester Laboratory Supervisors and an EPA Region 10 Quality Assurance Chemist following the procedures specified in the *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review* (EPA, October 1999) and *Inorganic Data Review* (EPA, February 1994). In addition, URS conducted a review of field quality control samples. This report summarizes problems identified by the EPA and URS that resulted in qualification of data.

Samples were collected according to the Quality Assurance Project Plan (QAPP) prepared by URS. Samples were analyzed for the following:

- Polychlorinated biphenyl (PCB) Aroclors by EPA SW-846 Method 8082
- Polyaromatic hydrocarbons (PAHs) by EPA SW-846 Method 8270C
- Volatile Organic Compounds (VOCs) by EPA SW-846 Method 8260B¹
- Alkalinity by Standard Method 2320B
- Total Dissolved Solids (TDS) by EPA Region 10 Manchester Environmental Laboratory Method I-1750
- Calcium by CLP SOW ILM04.1

All analyses were conducted by the EPA Region 10 Manchester Laboratory with the exception of the calcium analysis, which was conducted by American Analytical and Technical Services, Inc. of Broken Arrow, Oklahoma.

REPRESENTATIVENESS

Holding Times

All samples were properly preserved and analyzed within holding times.

ACCURACY

Instrument Calibration

Instrument tuning standards, initial calibrations and continuing calibrations were performed at the proper frequency and at the appropriate concentrations required by the methods. Calibrations were within criteria for the contaminants of concern.

Review of Blanks

Method blanks were used to check for laboratory contamination and instrument bias. The laboratory analyzed at least one blank for each analysis and for each batch per method requirements. Contaminants of concern were not detected in method blanks.

¹ This Data Quality Summary Report includes only those VOCs that are contaminants of concern or associated breakdown products: tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane.

Six field blanks, seven equipment rinsate blanks, and six trip blanks were collected. One trip blank was not analyzed due to laboratory oversight. Data were not qualified as a result of this nonconformance. Contaminants of concern were not detected in the blanks.

Surrogate Recovery Review

Each sample was spiked with appropriate surrogates (system monitoring compounds). Surrogate recoveries were within method criteria with the exceptions listed below.

- The recoveries for the surrogate 1,2-dichloroethane-d4 in the VOC analysis were above the criterion for samples 0241265, 02414266, 02414274, 02414276, 02414277, and 02414280 through 02414282. The non-aromatic compounds were either non-detect in these samples or were detected at levels below the quantitation limits and already qualified as estimated ("J"); therefore, no additional qualifiers were applied.
- The recoveries for the surrogate p-bromofluorobenzene in the VOC analysis were below the criterion for samples 02414200, 02414201, 02414203, 02414208, 02414213, 02414219, 02414241, and 02414270. The aromatic target compound results for these samples were qualified as estimated ("J/UJ").
- The recoveries for the surrogate 1,2-dichloroethane-d4 were above the criterion for the diluted VOC reanalysis of samples 02414227, 02414229, 02414231, 02414232, 02414241, and 02414256. The detected results were qualified as estimated ("J").

Matrix Spike/Matrix Spike Duplicate Review

Matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed to assess the ability of the laboratories to recover the target compounds from the sample matrix. One MS/MSD sample pair was analyzed for each sample batch as required.

Data were evaluated for percent recovery (% Rec) of target compounds and relative percent difference (RPD) between the compound recoveries in the MS and MSD.

Recoveries and RPDs that fell outside project criteria were attributed to the spike level being too low relative to the native concentrations and did not result in sample result qualification.

Compound Quantitation

Calculations were based on the initial calibration. Sample quantitation limits were adjusted according to sample amounts, calibration data and dilution factors. Some compounds were detected at levels below the lowest calibration concentration of the initial calibration curve. These values were qualified as estimated ("J").

The reported vinyl chloride result for sample 02424201 was above the calibration range and was qualified as estimated ("J").

PRECISION

Field Duplicate Review

Five field duplicates were collected for VOC analysis and one field duplicate was collected for alkalinity, TDS, and total calcium. Field duplicates were not collected for PAH and PCB analyses because these results were used only for investigation derived

waste characterization. Project-specific control limits for relative percent differences (RPDs) are 25% for VOCs and 20% for alkalinity, TDS and total calcium. Tables 1 (VOCs) and 2 (total alkalinity, TDS, and total calcium) present the field duplicate RPDs. The RPD is not calculated when sample results are less than five times the reporting limit. The field duplicate results show good agreement with the exception of the trichloroethene results for samples 02414235 and 02414236, which exceeded the VOC RPD criteria of 25% at 27.8%. The results were not qualified as a result of this minor exceedance.

COMPARABILITY

Reporting Limits

The requested reporting limits for analyses are listed below. The laboratory reporting limits are all at or below the requested reporting limits.

MATRIX	PARAMETER	REQUESTED REPORTING LIMIT
Water	VOCs	1 μg/L
Water	Calcium	50 μg/L
Water	Total Alkalinity	20 mg/L
Water	Total Dissolved Solids	20 mg/L
Water	PCBs	2 μg/L
Water	PAHs	25 μg/L
Soil	VOCs	10 ug/Kg
Soil	PCBs	0.1 mg/Kg
Soil	PAHs	2 mg/Kg

COMPLETENESS

The laboratory reported all requested analyses with one exception. Trip blank sample number 02414271 was not analyzed for VOCs due to laboratory oversight. The project completeness is 99.5%.

Based on the QA/QC review, the following qualifiers were applied to data:

- J The identification of the analyte is acceptable; the reported value is an estimate.
- JK The identification of the analyte is acceptable; the reported value is an estimate and may be biased high. The actual value is expected to be less than the reported value.
- UJ The analyte was not detected at or above the reported value. The reported value is an estimate.

Tables 3, 4, 5, 6, and 8 in the main body of the report present the analytical data, including detected and undetected compounds and their associated data qualifiers.

TABLE 1 Field Duplicate Relative Percent Difference Chemicals of Concern and Associated Breakdown Products

Station ID	PZ-06 P		PZ-06 P D		RPD
Sample Number	02414257		02414258		
PCE	2.5		2.3		8.3
TCE	2.6		2.7		3.8
cis-1,2-DCE	5		5		0.0
Vinyl Chloride	0.5	U	0.5	U	0.0
1,1-DCE	0.5	U	0.5	U	0.0
trans-1,2-DCE	0.5	U	0.5	U	0.0
1,1-DCA	0.5	U	0.5	U	0.0
1,1,1-TCA	0.5	U	0.5	U	0.0
	•		•		

Station ID	MW-14		MW-14 D		RPD
Sample Number	02414235		02414236		
PCE	0.5	С	0.5	J	0.0
TCE	0.5	С	0.5	J	0.0
cis-1,2-DCE	0.5	С	0.5	J	0.0
Vinyl Chloride	0.5	С	0.5	J	0.0
1,1-DCE	0.5	С	0.5	J	0.0
trans-1,2-DCE	0.5	U	0.5	U	0.0
1,1-DCA	0.5	С	0.5	J	0.0
1,1,1-TCA	0.5	U	0.5	U	0.0

Station ID	MW-DOT6		MW-DOT6 D		RPD
Sample Number	02414254		02414255		
PCE	0.5	U	0.5	U	0.0
TCE	3.1		4.1		27.8
cis-1,2-DCE	2.4		2.3		4.3
Vinyl Chloride	1	U	1	U	0.0
1,1-DCE	0.5	U	0.5	U	0.0
trans-1,2-DCE	1	U	1	U	0.0
1,1-DCA	0.5	U	0.5	U	0.0
1,1,1-TCA	0.5	U	0.5	U	0.0

Station ID	MW-105		MW-105 D		RPD
Sample Number	02414217		02414218		
PCE	9.9		9.5		4.1
TCE	2.8		2.6		7.4
cis-1,2-DCE	2.6		2.6		0.0
Vinyl Chloride	1.3		1.3		0.0
1,1-DCE	0.5	U	0.5	U	0.0
trans-1,2-DCE	0.5	U	0.5	U	0.0
1,1-DCA	0.5	U	0.5	U	0.0
1,1,1-TCA	0.5	U	0.5	U	0.0

Station ID	MW-107		MW-107 D		RPD
Sample Number	02414220		02414221		
PCE	0.5	U	0.5	U	0.0
TCE	0.5	U	0.5	U	0.0
cis-1,2-DCE	1	U	1	U	0.0
Vinyl Chloride	1	U	1	U	0.0
1,1-DCE	0.5	U	0.5	U	0.0
trans-1,2-DCE	1	U	1	U	0.0
1,1-DCA	0.5	U	0.5	U	0.0
1,1,1-TCA	0.5	U	0.5	U	0.0

Note:

RPD - Relative Percent Difference

U -The analyte was not detected at or above the reported value.

TABLE 2 Field Duplicate Relative Percent Difference Ryznar Index Parameter Results

Station ID	MW-15	MW-15 Dup	RPD
Sample			
Number	02414238	02414261	
Alkalinity as			
CaCO ₃ (mg/L)	104	104	0.0
Total Dissolved			
Solids (mg/L)	170	172	2.1
Total Calcium			
(mg/L)	23.8	24.3	2.1
рН	6.44	6.44	0.0

RPD - Relative Percent Difference